
Projects
Hessian scientists of various disciplines are using High Performance Computers for their research.
Hessian scientists of various disciplines are using High Performance Computers for their research.
Displaying 1 - 30 of 130
Non-covalent interactions (NCIs) not only govern the structure biomacromolecules such as proteins and DNA, but often ...
Linking experimental and theoretical observations on a physical system is one of the key objectives of modern science ...
Symmetry, dimensionality, and local environment are essential elements affecting the magnetism of transition-metal ...
Azides are omnipresent in organic and inorganic chemical synthesis. They are readily introduced into molecules and allow ...
The prime goal of ab initio (hyper)nuclear structure theory is the description of correlated systems of many baryons ...
In the past centuries chemists have established a solid knowledge for the synthesis of molecules in solution. With the ...
Functional materials for magnetic cooling devices at room temperature are in focus for the materials scientists during ...
While hydrogen is promising for energy storage or mobility applications, the platinum catalysts often needed to convert ...
With street traffic being a major contributor to carbon dioxide emission and global warming, alternatives to the ...
The previous investigation of SnN clusters with N = 6−40 showed that below a clusters size of about 30 atoms, a prolate ...
Combined with quantum chemical calculations, Mössbauer spectroscopy is a powerful tool to elucidate the structure of ...
Two unsolved problems in the standard model of particle physics are the strong CP-problem and the nature of dark matter ...
Two unsolved problems in the standard model of particle physics are the strong CP-problem and the nature of dark matter ...
Mössbauer spectroscopy is a powerful tool for investigating iron in molecular and especially amorphous systems. Combined ...
Quantum Chromodynamics (QCD), sometimes referred to as the strong force, explains the forces that govern atomic nuclei ...
The potential of chalcogenides in applications like optoelectronics, thermoelectrics, transparent contacts, and thin ...
A quantum computer is a device that exploits quantum behavior to solve a computational problem that cannot be tackled ...
Linking experimental and theoretical observations on a physical system is one of the key objectives of modern science ...
The ab initio description of medium-mass nuclei is one of the most dynamic frontiers in nuclear structure theory. One ...
We survey the landscape of MAB and Mbene superconductors out of our previous high-throughput predictions using first ...
Nuclear energy density functionals successfully reproduce properties of nuclei across almost the entire nuclear chart ...
Metal nitrene compounds are highly reactive species with a unique electronic structure. Such compounds are promising ...
In the framework of the Collaborative Research Center (CRC 1487), iron is studied as a substitute for rare-earth metals ...
The prime goal of ab initio nuclear structure theory is the description of correlated systems of many nucleons based on ...
Analyzing the correlation structure of quantum systems is central to understanding their behaviour. The notion of sector ...
White light generation (WLG) is one of the most puzzling and exciting topics in nonlinear optics. Strictly speaking, WLG ...
Active matter consisting of motile agents such as bacteria, algae, or synthetic microswimmers on the microscale and ...
The structure of nuclei gives fundamental insight into strong interactions between nucleons, beyond-standard-model ...
For transition metal doped clusters, the transition metal and the host element play a fundamental role in the physical ...
In the framework of the Collaborative Research Center (CRC 1487), iron is studied as a substitute for rare-earth metals ...