
Projects
Hessian scientists of various disciplines are using High Performance Computers for their research.
Hessian scientists of various disciplines are using High Performance Computers for their research.
Displaying 1 - 30 of 58
The computational resources of the Lichtenberg HPC were used in this project to train physics informed machine learning ...
The project seeks to create a comprehensive model linking nanoscale phenomena to larger-scale behaviors to better ...
Layered transition metal oxides, derived from the model system LiCoO2, are used as cathode materials in Li-ion batteries ...
During development and adult homeostasis, cells in our bodies need to constantly integrate internal and external ...
The potential of chalcogenides in applications like optoelectronics, thermoelectrics, transparent contacts, and thin ...
A quantum computer is a device that exploits quantum behavior to solve a computational problem that cannot be tackled ...
Heusler alloys are a remarkable class of intermetallic materials with a wide spectrum of intriguing physical properties ...
Optoelectronic materials have attracted significant attention owing to the global energy shortage and environmental ...
We survey the landscape of MAB and Mbene superconductors out of our previous high-throughput predictions using first ...
Vibroacoustic vehicle behavior specifies among others the quality of vehicles and contributes to customer satisfaction ...
To understand and study complex materials at the atomic level, it is essential to be able to calculate forces and ...
The simulation of materials on the atomistic scale requires a description of interatomic interactions. Quantum ...
The project aims to develop a bridging model that connects the nanoscale to the upscaled levels for understanding the ...
Detailed multi-scale modelling provides in-depth insights into the complex phenomena of catalytic systems that typically ...
X-ray Absorption Spectroscopy (XAS) is a pivotal technique in material research, requiring numerous sampling points for ...
Nowadays, atomistic simulations are becoming more and more important. Due to the increasing availability of ...
Autonomous materials discovery with desired properties is one of the ultimate goals for modern materials science, and ...
During development and adult homeostasis, cells in our bodies need to constantly integrate internal and external ...
The compound semiconductor system Cu(In, Ga)(S, Se)2 (short: CIGS) forms the basis for the currently most efficient thin ...
This project was a follow-up project for our initial project intended at setting up Lichtenberg Cluster for the use ...
The prediction accuracy of models is affected using deterministic parameters. That is because the uncertainty of these ...
Metallic glasses (MGs) can be produced by quickly quenching alloy melts. They typically show a higher elastic limit and ...
Overall objective of this project is to develop an elementary physical/chemical bridging model for the chemical reaction ...
This project was a follow-up project for our initial project intended at setting up Lichtenberg Cluster for the use ...
Layered transition metal oxides are employed as cathode materials in high-voltage, rechargeable lithium ion batteries ...
One approach to the realization of safer batteries relies on all solid-state batteries (ASSB) which use a non-flammable ...
Refractory metal silicide systems like Mo-Si-Ti are expected to be ideal substrates in composite materials for high ...
Predicting the temperature dependent properties of magnetic materials is still challenging, which cannot be dealt with ...
The aim of the last project was to understand the CO2 activation over Au and Cu loaded ceria and bare indium oxide. In ...
Antiferroelectric (AFE) materials have recently been of a great interest, due to their unique applications in the energy ...