
Projekte
Hessische Wissenschaftlerinnen und Wissenschaftler unterschiedlichster Disziplinen benötigen Hochleistungsrechnen für ihre Forschung.
Hessische Wissenschaftlerinnen und Wissenschaftler unterschiedlichster Disziplinen benötigen Hochleistungsrechnen für ihre Forschung.
Displaying 1 - 30 of 47
The project seeks to create a comprehensive model linking nanoscale phenomena to larger-scale behaviors to better ...
Layered transition metal oxides, derived from the model system LiCoO2, are used as cathode materials in Li-ion batteries ...
The potential of chalcogenides in applications like optoelectronics, thermoelectrics, transparent contacts, and thin ...
Enhanced Geothermal Systems (EGS) exploit the Earth's geothermal energy resources, especially in areas with low ...
A quantum computer is a device that exploits quantum behavior to solve a computational problem that cannot be tackled ...
With the increasing use of renewable energy comes an increasing volatility in energy supply due to external factors ...
Heusler alloys are a remarkable class of intermetallic materials with a wide spectrum of intriguing physical properties ...
Optoelectronic materials have attracted significant attention owing to the global energy shortage and environmental ...
We survey the landscape of MAB and Mbene superconductors out of our previous high-throughput predictions using first ...
To understand and study complex materials at the atomic level, it is essential to be able to calculate forces and ...
The simulation of materials on the atomistic scale requires a description of interatomic interactions. Quantum ...
The project aims to develop a bridging model that connects the nanoscale to the upscaled levels for understanding the ...
X-ray Absorption Spectroscopy (XAS) is a pivotal technique in material research, requiring numerous sampling points for ...
Nowadays, atomistic simulations are becoming more and more important. Due to the increasing availability of ...
Autonomous materials discovery with desired properties is one of the ultimate goals for modern materials science, and ...
The compound semiconductor system Cu(In, Ga)(S, Se)2 (short: CIGS) forms the basis for the currently most efficient thin ...
Metallic glasses (MGs) can be produced by quickly quenching alloy melts. They typically show a higher elastic limit and ...
Overall objective of this project is to develop an elementary physical/chemical bridging model for the chemical reaction ...
Layered transition metal oxides are employed as cathode materials in high-voltage, rechargeable lithium ion batteries ...
One approach to the realization of safer batteries relies on all solid-state batteries (ASSB) which use a non-flammable ...
Refractory metal silicide systems like Mo-Si-Ti are expected to be ideal substrates in composite materials for high ...
Predicting the temperature dependent properties of magnetic materials is still challenging, which cannot be dealt with ...
The aim of the last project was to understand the CO2 activation over Au and Cu loaded ceria and bare indium oxide. In ...
Antiferroelectric (AFE) materials have recently been of a great interest, due to their unique applications in the energy ...
Magnetic materials are key components for energy harvesting and conversion, information technology and sensor ...
In 2018, Gottschall et al. proposed a multi-stimulit concept for magnetocaloric cooling. [1] The energy consumption ...
To combat climate change effectively, the use of renewable energy must increase. However, the supply of renewable energy ...
Ceria is an important support material for precious metals to catalyze oxidation reactions such as CO oxidation or the ...
Thin films of lead zirconate-titanate (PZT) belong to the most widely used ferroelectric materials. They possess large ...
Dielectric capacitors are considered to be promising candidates for energy storage applications in high power ...