
Projects
Hessian scientists of various disciplines are using High Performance Computers for their research.
Hessian scientists of various disciplines are using High Performance Computers for their research.
Displaying 1 - 30 of 78
In recent years, Cardiovascular diseases (CVDs) and other cardiac abnormalities have been on the rise, becoming a ...
Predicting the lifetime of components designed for very high temperatures is crucial for improving the efficiency and ...
Hydrogen has emerged as a crucial element in the pursuit of decarbonization and the transition to a sustainable energy ...
Voltage-dependent K+ channels are facilitators of a diverse set of physiological processes, including neuronal signaling ...
Germany has the ambitious goal of covering all electricity generation by renewable sources by 2045. The Kopernikus ...
Laser powder bed fusion (LPBF) is an additive manufacturing technology involving a gradual build-on of layers to form a ...
Layered transition metal oxides, derived from the model system LiCoO2, are used as cathode materials in Li-ion batteries ...
During development and adult homeostasis, cells in our bodies need to constantly integrate internal and external ...
The application of metallic glasses (MGs) is limited by their brittle behavior at room temperature [1]. In order to ...
A quantum computer is a device that exploits quantum behavior to solve a computational problem that cannot be tackled ...
Heusler alloys are a remarkable class of intermetallic materials with a wide spectrum of intriguing physical properties ...
Optoelectronic materials have attracted significant attention owing to the global energy shortage and environmental ...
Vibroacoustic vehicle behavior specifies among others the quality of vehicles and contributes to customer satisfaction ...
To understand and study complex materials at the atomic level, it is essential to be able to calculate forces and ...
Inverse optimal control (IOC) is the problem of inferring an agent's cost function and other properties of their ...
As facilitators of ionic currents across biological membranes, voltage-dependent K+ channels are involved in a broad ...
The simulation of materials on the atomistic scale requires a description of interatomic interactions. Quantum ...
Along with technological advancements, the search for better-performing functional materials is also deepening. Having ...
X-ray Absorption Spectroscopy (XAS) is a pivotal technique in material research, requiring numerous sampling points for ...
Nowadays, atomistic simulations are becoming more and more important. Due to the increasing availability of ...
Fracture is an everyday phenomena which describes the partial or full separation of a body. Fracture is driven by ...
During development and adult homeostasis, cells in our bodies need to constantly integrate internal and external ...
The compound semiconductor system Cu(In, Ga)(S, Se)2 (short: CIGS) forms the basis for the currently most efficient thin ...
The prediction accuracy of models is affected using deterministic parameters. That is because the uncertainty of these ...
Metallic glasses (MGs) can be produced by quickly quenching alloy melts. They typically show a higher elastic limit and ...
Ferroelectric ceramics with perovskite structure can be used in novel cooling applications based on the electrocaloric ...
Since their invention in the 1960s, metallic glasses (MGs) gained great attention due to their high strength and elastic ...
Layered transition metal oxides are employed as cathode materials in high-voltage, rechargeable lithium ion batteries ...
Natural visuomotor control tasks such as pouring liquids into cups are trivial for humans but are challenging to model ...
One approach to the realization of safer batteries relies on all solid-state batteries (ASSB) which use a non-flammable ...