
Projekte
Hessische Wissenschaftlerinnen und Wissenschaftler unterschiedlichster Disziplinen benötigen Hochleistungsrechnen für ihre Forschung.
Hessische Wissenschaftlerinnen und Wissenschaftler unterschiedlichster Disziplinen benötigen Hochleistungsrechnen für ihre Forschung.
Displaying 1 - 30 of 40
The computational resources of the Lichtenberg HPC were used in this project to train physics informed machine learning ...
The project seeks to create a comprehensive model linking nanoscale phenomena to larger-scale behaviors to better ...
The objective of this ongoing project is the continuous development and advancement of effective simulation methods for ...
Variational inference with Gaussian mixture models (GMMs) can be used to learn highly tractable approximations of ...
During development and adult homeostasis, cells in our bodies need to constantly integrate internal and external ...
The increase in complex cyber-attacks illustrates the vulnerability of society and information infrastructure. In ...
Artificial intelligence is currently developing faster than ever and introduces many different possibilities. Our client ...
Many problems in machine learning involve inference from intractable distributions. For example, when learning latent ...
We survey the landscape of MAB and Mbene superconductors out of our previous high-throughput predictions using first ...
In order to facilitate rapid prototyping and testing in the advanced motorsport industry, we consider the problem of ...
Vibroacoustic vehicle behavior specifies among others the quality of vehicles and contributes to customer satisfaction ...
The project aims to develop a bridging model that connects the nanoscale to the upscaled levels for understanding the ...
Recent work has shown that deep neural networks are able to predict human similarity judgments with high accuracy (e.g ...
Detailed multi-scale modelling provides in-depth insights into the complex phenomena of catalytic systems that typically ...
Autonomous materials discovery with desired properties is one of the ultimate goals for modern materials science, and ...
Neural networks are usually trained with a static architecture. However, the fields of growing and pruning, or ...
During development and adult homeostasis, cells in our bodies need to constantly integrate internal and external ...
The increase in complex cyber-attacks illustrates the vulnerability of society and information infrastructure. In ...
This project was a follow-up project for our initial project intended at setting up Lichtenberg Cluster for the use ...
The prediction accuracy of models is affected using deterministic parameters. That is because the uncertainty of these ...
Overall objective of this project is to develop an elementary physical/chemical bridging model for the chemical reaction ...
This project was a follow-up project for our initial project intended at setting up Lichtenberg Cluster for the use ...
Refractory metal silicide systems like Mo-Si-Ti are expected to be ideal substrates in composite materials for high ...
Antiferroelectric (AFE) materials have recently been of a great interest, due to their unique applications in the energy ...
In 2018, Gottschall et al. proposed a multi-stimulit concept for magnetocaloric cooling. [1] The energy consumption ...
Empirical performance modeling is a proven instrument to analyze the scaling behavior of HPC applications. Using a set ...
To model future energy systems and their markets, it is important to understand the underlying dynamics of their ...
Understanding the behavior of different materials not only furthers general knowledge, but can also often be used for ...
Lighting, both natural and artificial, has become a part of our daily lives that have been taken for granted in modern ...
Millions of European and American workers are increasingly asked to accumulate pension assets. In order to augment ...