
Projekte
Hessische Wissenschaftlerinnen und Wissenschaftler unterschiedlichster Disziplinen benötigen Hochleistungsrechnen für ihre Forschung.
Hessische Wissenschaftlerinnen und Wissenschaftler unterschiedlichster Disziplinen benötigen Hochleistungsrechnen für ihre Forschung.
Displaying 1 - 30 of 139
Non-covalent interactions (NCIs) not only govern the structure biomacromolecules such as proteins and DNA, but often ...
Predicting the lifetime of components designed for very high temperatures is crucial for improving the efficiency and ...
Hydrogen has emerged as a crucial element in the pursuit of decarbonization and the transition to a sustainable energy ...
Azides are omnipresent in organic and inorganic chemical synthesis. They are readily introduced into molecules and allow ...
The prime goal of ab initio (hyper)nuclear structure theory is the description of correlated systems of many baryons ...
Laser powder bed fusion (LPBF) is an additive manufacturing technology involving a gradual build-on of layers to form a ...
While hydrogen is promising for energy storage or mobility applications, the platinum catalysts often needed to convert ...
With street traffic being a major contributor to carbon dioxide emission and global warming, alternatives to the ...
The previous investigation of SnN clusters with N = 6−40 showed that below a clusters size of about 30 atoms, a prolate ...
Combined with quantum chemical calculations, Mössbauer spectroscopy is a powerful tool to elucidate the structure of ...
Two unsolved problems in the standard model of particle physics are the strong CP-problem and the nature of dark matter ...
Two unsolved problems in the standard model of particle physics are the strong CP-problem and the nature of dark matter ...
Layered transition metal oxides, derived from the model system LiCoO2, are used as cathode materials in Li-ion batteries ...
Mössbauer spectroscopy is a powerful tool for investigating iron in molecular and especially amorphous systems. Combined ...
Quantum Chromodynamics (QCD), sometimes referred to as the strong force, explains the forces that govern atomic nuclei ...
The application of metallic glasses (MGs) is limited by their brittle behavior at room temperature [1]. In order to ...
A quantum computer is a device that exploits quantum behavior to solve a computational problem that cannot be tackled ...
The ab initio description of medium-mass nuclei is one of the most dynamic frontiers in nuclear structure theory. One ...
Heusler alloys are a remarkable class of intermetallic materials with a wide spectrum of intriguing physical properties ...
Optoelectronic materials have attracted significant attention owing to the global energy shortage and environmental ...
Nuclear energy density functionals successfully reproduce properties of nuclei across almost the entire nuclear chart ...
To understand and study complex materials at the atomic level, it is essential to be able to calculate forces and ...
Metal nitrene compounds are highly reactive species with a unique electronic structure. Such compounds are promising ...
In the framework of the Collaborative Research Center (CRC 1487), iron is studied as a substitute for rare-earth metals ...
The prime goal of ab initio nuclear structure theory is the description of correlated systems of many nucleons based on ...
The simulation of materials on the atomistic scale requires a description of interatomic interactions. Quantum ...
Along with technological advancements, the search for better-performing functional materials is also deepening. Having ...
Analyzing the correlation structure of quantum systems is central to understanding their behaviour. The notion of sector ...
The structure of nuclei gives fundamental insight into strong interactions between nucleons, beyond-standard-model ...
For transition metal doped clusters, the transition metal and the host element play a fundamental role in the physical ...