
Generating scalability proofs with Extra-P

Alexandru Calotoiu (calotoiu@cs.tu-darmstadt.de)
Christian Iwainsky (christian.iwainsky@sc.tu-darmstadt.de)
http://www.scalasca.org/software/extra-p/download.html

June 18, 2018

Contents

1 Introduction 2

2 Extra-P 3

3 How to use SST/ExtraP 3

4 Dos and don’ts of scalability modeling 4

4.1 Choosing measurement configurations 4

4.2 Weak versus strong scaling . 5

calotoiu@cs.tu-darmstadt.de
christian.iwainsky@sc.tu-darmstadt.de
http://www.scalasca.org/software/extra-p/download.html

1 Introduction

For parallel applications, the use of increasing parallelism usually results in dimin-
ishing returns. Here, hardware, software and data-set properties interplay and con-
tribute to the overall effect of diminishing returns. Therefore, the use of parallelism
is a trade-off between resource-investment, time-to-solution and the ability to solve
a specific problem in the first place, due to resource limitations.

For example, a single process can use only the memory available to a single system
of a cluster, whereas two networked processes can use up to twice the amount RAM
using two systems. However, the necessary networking required to coordinate both
processes and transmit essential information will cost some overhead, thus decreasing
the overall performance. It follows that additional nodes can be used to process larger
problems or to decrease the time-to-solution at the cost of additional overhead. The
growth of this overhead depends on the algorithms used, the quality of implementa-
tion and the system hardware properties, and can grow very rapidly or very slowly;
there may exist one ore more latent limitations that prevent a given software to ef-
ficiently make use of the available hardware. This is called scalability behavior and
expressed by a scalability function. add definition of scalability

As HPC resources are expensive and limited,e.g. as a result of operational costs and
available quotas, it is necessary to establish the scalability behavior in order to find the
configuration with the best time-to-solution and an affordable resource investment.
Usually the scalability behavior is either observed through measurements or derived
from a performance model.

A performance model is a formula that expresses a performance metric of interest
such as execution time or energy consumption as a function of one or more execu-
tion parameters such as the size of the input problem or the number of processors.
The observation of scalability behavior requires many measurements up to the de-
gree of intended parallelism and is therefore in all but the rarest of circumstances
undesirable due to its resource intensity, time consumption and inherent limitations
of its applicability. Unfortunately, deriving performance models analytically from
the code is laborious and requires specific expertise such that many application de-
velopers shy away from the effort.

A solution is a hybrid of both methods: a smaller number of measurements are used
as inputs for a statistical analysis to create empirical performance models, which provide
the same types of insights as analytical models. The Extra-P tool automatically deter-
mines empirical performance models, both of applications regarded in their entirety
as well as for each function in an application if appropriate information is provided
in the measurements used.

This document describes how to use the Extra-P and support tools to implement a
scalability study and establish an empirical scalability function of a code using few
resources. Such a scalability function can be used to show that a program uses a sys-
tem efficiently in a given configuration, which is often required by compute centers,
and to determine the best trade-off between time-to-solution and resource invest.
Beyond the generation of scalability functions, Extra-P can be used to pin-point any
scalability issues present and support developers in the performance analysis process.

2

Paralelization Paradigm Monitoring command
MPI SST_MPI_monitor NAME PS NP
OpenMP SST_OpenMP_monitor NAME PS NT
MPI+OpenMP SST_MPI-OpenMP_monitor NAME PS NP NT

Table 1: Monitoring Driver Variants
NAME: the name of the Scalability Study Project. PS: Problemsize of the run; size is used to model
weak scaling applications. NP: Number of processes used; this corresponds to the total number of MPI
ranks used. NT: Number of threads used; this is the number of OpenMPthreads available to the program.

2 Extra-P

Themodel generator Extra-P [2, 1] uses empirical measurements to generate perfor-
mance models in an attempt to help developers better understand their applications
and determine performance bottlenecks of any kind. The goal is to offer the type
of insight analytical models of codes bring developers without the significant man-
ual effort involved in obtaining these models. Extra-P requires a set of performance
measurements as input, representing runs with different numbers of processes and
problem sizes.

As a rule of thumb, we need to run measurements for at least five different con-
figurations of each parameter we consider, requiring 5 measurements in the case of
process count variation or 25 measurements if both process count and input size vari-
ation is considered. Depending on the noise affecting the system, the measurements
sometimes need to be repeated to quantify and limit the effect of noise.

3 How to use SST/ExtraP

The regular use of Extra-P involves potentially expensive performance measure-
ments, usually involving the measurement system ScoreP. This level of detail is ini-
tially neither desired nor necessary, as the complexity of managing the generated
amount of information is considerable. To reduce the measurement costs as well
as the effort by the user, we have created a tool-set, called "Scalability Study Tool"
(SST), that simplifies the whole modeling process. Three steps are required:

1. Initialization: Create a project identifier for your scalability study using the
SST_Create NAME command; the NAME can be any string consisting of let-
ters and numbers, such as "project001". This name will be used to identify the
measurements belonging to that scalability study.

2. Measurements: Run your application under control of the monitoring tool. Cur-
rently we provide measurement drivers for the different parallelization variants,
one for MPI-only programs, one for OpenMPprograms and one for hybrid MPI-
OpenMPprograms (see Table 1). TheNAME refers to the specific scalability study
you are working on. The PS specifies your programs problem size. This does not
necessarily have to map to a direct parameter from your application, but should
facilitate the modeling process to model runtime as a parameter of your problem
size. For strong scaling applications this parameter must remain constant. NPand
NT refers to the number of MPI processes respectively OpenMPthreads used in
the program. Both arguments define the degree of parallelism available to the
program and serves as the primary parameter for the performance model.

3

The important aspect here, is to vary as few parameters as possible, as this controls
the number of varying experiments that must be performed. As a rule of thumb,
for each varying configuration five experiments suffice to create a sufficientmodel.
This corresponds to 5dim experiments in total, with dim representing the number
of changing configuration parameters.

3. Analysis and Modeling: Once the principal set of measurements have been com-
pleted, the data can be analyzed and processed to create a performance model.
This is done with the SST_Report NAME command. This will evaluate the gath-
ered data and generate a scalability graph in the current directory with the
ScalabilityReport_NAME.png. You may inspect the
model either visually, or by reading the model-file
ScalabilityReport_NAME.txt. Please note, that if you do not provide a
name for the report-tool, it will generate a report on all Scalability Projects you
have conducted in the past.

To use the Scalability Study Toolplease you need to load the Scalability Study
Tool module found in the HKHLR module package. To load this module, please
enter module load hkhlr ScalabilityStudyTool

The following example shows the basic steps of using the Scalability Study Tool for
a strong scaling study.

Listing 1: Shell Command Example
module load hkhlr S c a l a b i l i t y S t u dyToo l

SST_Ini t p r o j e c t 01

srun −n 2 SST_MPImonitor p ro j e c t 01 2 −− . / myProgram Ars

srun −n 4 SST_MPImonitor p ro j e c t 01 4 −− . / myProgram Ars

srun −n 8 SST_MPImonitor p ro j e c t 01 8 −− . / myProgram Ars

srun −n 16 SST_MPImonitor p ro j e c t 01 16 −− . / myProgram Ars

SST_Report p ro j e c t 01

4 Dos and don’ts of scalability modeling

4.1 Choosing measurement configurations

There are a number of aspects to consider when choosing what measurements to
conduct to create the input set that Extra-P requires. Extra-P assumes that the mea-
surements represent different variations of one type of behavior.

Uniformity: Changes in algorithm or qualitative changes in hardware should not
occur within a set of measurements. For example, certain MPI implementations
change the algorithm they use for collective operations if the number of processes
involved is greater than a certain value, such as 64 or 256. Another consideration in
the case of the number of processes is that algorithms and hardware systems often
perform differently for certain processor counts. For example, having the number of
processors be powers of two can have a different scaling behavior, often better, than
using odd processor counts.

4

Noise: If the variationmeasuredwhen repeating the same performance experiment
is on the same order of magnitude as the difference between different experiments,
the noise is too great to allow for meaningful modeling. In this case an analysis of
the measurement system is necessary to understand why the noise affects the mea-
surements to such a degree.

Relevance: The measurements should be representative for how the program is
intended to be run. For example, is the program normally uses dense matrices in
its computations, sparse matrices should not be used when performing the measure-
ments. Furthermore, the runtime of the program should be large enough to be mea-
surable above the OS jitter and initial starting times caused by hardware systems. We
recommend a runtime of at least 2 minutes for each measurement.

Howto: Assuming the above points are considered, we suggest using the smallest
five experiment points that captured the desired behavior. Often, using one or two
processes falls into a corner case behavior, and we therefore suggest using at least
4 processes. If possible, use process counts equal to powers of two. Therefore, in
absence of other constraints, we suggest trying 4, 8, 16, 32, and 64 processes as an
input set.

4.2 Weak versus strong scaling

Extra-P canmodel both strong andweak scaling behaviors. However, there are some
aspects that warrant special consideration in each case.

Weak scaling: Weak scaling assumes that as more processes are added, the prob-
lem size also increases such that the work per process remains constant. However,
depending on the application, it is not always trivial to determine how much the
problem size should grow to maintain a constant amount of work per process when
using more processes to solve a given problem. For example, if the amount of work
grows quadratically with the problem size, if we quadruple the number of processes
used the problem size should only be doubled.

Strong scaling: In strong scaling, the total problem size remains constant. This
can make measuring five different behaviors difficult, as the problem size must be
small enough to still fit the available memory at the smallest scale, but large enough
to allow the largest scalemeasurements to still remain relevant and not have negligible
runtime.

Scaling of both problem size and process count: Both strong and weak scaling
can be considered simplifications of the more general two parameter-model consid-
ering problem size and number of processes as separate independent variables. It is
possible to create two-parameter models using Extra-P by gathering a larger set of
measurements representing all combinations of a set of values for the two parameters.
We recommend contacting us directly if you intend such a scalability study and we
will help you through the steps involved.

5

References

[1] CALOTOIU, A., BECKINGSALE, D., EARL, C.W., HOEFLER, T., KARLIN, I., SCHULZ,
M., AND WOLF, F. Fast multi-parameter performance modeling. In Proc. of
the 2016 IEEE International Conference on Cluster Computing (CLUSTER), Taipei,
Taiwan (Sept. 2016), IEEE Computer Society, pp. 1–10.

[2] CALOTOIU, A., HOEFLER, T., POKE, M., AND WOLF, F. Using automated per-
formance modeling to find scalability bugs in complex codes. In Proc. of the
IEEE/ACM International Conference on High Performance Computing, Networking,
Storage and Analysis (SC13),Denver, Colorado, USA (Nov. 2013).

6

	Introduction
	Extra-P
	How to use SST/ExtraP
	Dos and don'ts of scalability modeling
	Choosing measurement configurations
	Weak versus strong scaling

