
Rechen- und Kommunikationszentrum (RZ)

Introduction to OpenMP

Christian Terboven <terboven@rz.rwth-aachen.de>

10.04.2013 / Darmstadt, Germany

Stand: 06.03.2013

Version 2.3

RZ: Christian Terboven Folie 2

 De-facto standard for Shared-Memory Parallelization.

 1997: OpenMP 1.0 for FORTRAN

 1998: OpenMP 1.0 for C and C++

 1999: OpenMP 1.1 for FORTRAN

(errata)

 2000: OpenMP 2.0 for FORTRAN

 2002: OpenMP 2.0 for C and C++

 2005: OpenMP 2.5 now includes

both programming languages.

 05/2008: OpenMP 3.0 release

 07/2011: OpenMP 3.1 release

 11/2012: OpenMP 4.0 RC1 + TR1

 03/2013: OpenMP 4.0 RC2

 05/2013: OpenMP 4.0 to be released

History

http://www.OpenMP.org

RWTH Aachen University is
a member of the OpenMP
Architecture Review Board
(ARB) since 2006.

RZ: Christian Terboven Folie 3

 Basic Concept: Parallel Region

 The For Construct

 The Single Construct

 The Task Construct

 Scoping: Managing the Data Environment

 The Synchronization and Reduction Constructs

 Runtime Library

Agenda

RZ: Christian Terboven Folie 4

Parallel Region

RZ: Christian Terboven Folie 5

 OpenMP programs start with

just one thread: The Master.

 Worker threads are spawned

at Parallel Regions, together

with the Master they form the

Team of threads.

 In between Parallel Regions the

Worker threads are put to sleep.

The OpenMP Runtime takes care

of all thread management work.

 Concept: Fork-Join.

 Allows for an incremental parallelization!

OpenMP Execution Model

Master Thread Serial Part

Parallel
RegionSlave

ThreadsSlave
ThreadsWorker
Threads

Parallel
Region

Serial Part

RZ: Christian Terboven Folie 6

 OpenMP: Shared-Memory Parallel Programming Model.

All processors/cores access

a shared main memory.

Real architectures are

more complex, as we

will see later / as we

have seen.

Parallelization in OpenMP

employs multiple threads.

OpenMP‘s machine model

Memory

Cache Cache Cache Cache

Proc Proc Proc Proc

Crossbar / Bus

RZ: Christian Terboven Folie 7

 The parallelism has to be expressed explicitly.

 Structured Block

 Exactly one entry point at the top

 Exactly one exit point at the bottom

 Branching in or out is not allowed

 Terminating the program is allowed

(abort / exit)

Parallel Region and Structured Blocks

C/C++

#pragma omp parallel

{

...

structured block

...

}

 Specification of number of threads:

 Environment variable:

OMP_NUM_THREADS=…

 Or: Via num_threads clause:

add num_threads(num) to the

parallel construct

Fortran

!$omp parallel

...

structured block

...

$!omp end parallel

RZ: Christian Terboven Folie 8

Hello OpenMP World

Demo

RZ: Christian Terboven Folie 9

 From within a shell, global setting of the number of threads:

export OMP_NUM_THREADS=4

./program

 From within a shell, one-time setting of the number of threads:

OMP_NUM_THREADS=4 ./program

 Intel Compiler on Linux: asking for more information:

export KMP_AFFINITY=verbose

export OMP_NUM_THREADS=4

./program

Starting OpenMP Programs on Linux

RZ: Christian Terboven Folie 10

Hello orphaned World

Demo

RZ: Christian Terboven Folie 11

For Construct

RZ: Christian Terboven Folie 12

 If only the parallel construct is used, each thread executes the

Structured Block.

 Program Speedup: Worksharing

 OpenMP‘s most common Worksharing construct: for

 Distribution of loop iterations over all threads in a Team.

 Scheduling of the distribution can be influenced.

 Loops often account for most of a program‘s runtime!

For Worksharing

C/C++

int i;

#pragma omp parallel for

for (i = 0; i < 100; i++)

{

a[i] = b[i] + c[i];

}

Fortran

INTEGER :: i

!$omp parallel do

DO i = 0, 99

a[i] = b[i] + c[i];

END DO

RZ: Christian Terboven Folie 13

Worksharing illustrated

do i = 0, 99

a(i) = b(i) + c(i)

end do

do i = 0, 24

a(i) = b(i) + c(i)

end do

do i = 25, 49

a(i) = b(i) + c(i)

end do

do i = 50, 74

a(i) = b(i) + c(i)

end do

do i = 75, 99

a(i) = b(i) + c(i)

end do

A(0)
.
.
.

A(99)

B(0)
.
.
.

B(99)

C(0)
.
.
.

C(99)

MemoryPseudo-Code
Here: 4 Threads

Thread 1

Thread 2

Thread 3

Thread 4

Serial

RZ: Christian Terboven Folie 14

Vector Addition

Demo

RZ: Christian Terboven Folie 15

The Single Construct

RZ: Christian Terboven Folie 16

 The single construct specifies that the enclosed structured block is

executed by only on thread of the team.

 It is up to the runtime which thread that is.

 Useful for:

 I/O

 Memory allocation and deallocation, etc. (in general: setup work)

 Implementation of the single-creator parallel-executor pattern as we will see

now…

The Single Construct

C/C++

#pragma omp single [clause]

... structured block ...

Fortran

!$omp single [clause]

... structured block ...

!$omp end single

RZ: Christian Terboven Folie 17

Task Construct

RZ: Christian Terboven Folie 18

 Can we parallelize this code with the For-Worksharing construct?

typedef list<double> dList;

dList myList;

/* fill myList with tons of items */

dList::iterator it = myList.begin();

while (it != myList.end())

{

*it = processListItem(*it);

it++;

}

 No.

 One possibility: Create a fixed-sized array containing all list items

and a parallel loop running over this array

Concept: Inspector / Executor

How to parallelize a While-loop?

RZ: Christian Terboven Folie 19

 Or: Use Tasking in OpenMP 3.0

#pragma omp parallel

{

#pragma omp single

{

dList::iterator it = myList.begin();

while (it != myList.end())

{

#pragma omp task

{

*it = processListItem(*it);

}

it++;

}

}

}

 All while-loop iterations are independent from each other!

How to parallelize a While-loop!

This structured block will be executed by just one thread, the
other threads will skip the block and jump right to it’s end.

RZ: Christian Terboven Folie 20

 Each encountering thread/task creates a new Task

 Code and data is being packaged up

 Tasks can be nested

 Into another Task directive

 Into a Worksharing construct

 Data scoping clauses:

 shared(list)

 private(list) firstprivate(list)

 default(shared | none)

The Task Construct

C/C++

#pragma omp task [clause]

... structured block ...

Fortran

!$omp task [clause]

... structured block ...

!$omp end task

RZ: Christian Terboven Folie 21

Fibonacci

Case Study

RZ: Christian Terboven Folie 22

 On the following slides we will discuss three approaches to

parallelize this recursive code with Tasking.

Recursive approach to compute Fibonacci

int main(int argc,

char* argv[])

{

[...]

fib(input);

[...]

}

int fib(int n) {

if (n < 2) return n;

int x = fib(n - 1);

int y = fib(n - 2);

return x+y;

}

RZ: Christian Terboven Folie 23

o Only one Task / Thread enters fib() from main(), it is responsable

for creating the two initial work tasks

o Taskwait is required, as otherwise x and y would be lost

First version parallelized with Tasking
(omp-v1)

int main(int argc,

char* argv[])

{

[...]

#pragma omp parallel

{

#pragma omp single

{

fib(input);

}

}

[...]

}

int fib(int n) {

if (n < 2) return n;

int x, y;

#pragma omp task shared(x)

{

x = fib(n - 1);

}

#pragma omp task shared(y)

{

y = fib(n - 2);

}

#pragma omp taskwait

return x+y;

}

RZ: Christian Terboven Folie 24

 Overhead of task creation prevents better scalability!

Scalability measurements (1/3)

0

1

2

3

4

5

6

7

8

9

1 2 4 8

Sp
e

e
d

u
p

#Threads

Speedup of Fibonacci with Tasks

optimal

omp-v1

RZ: Christian Terboven Folie 25

 Improvement: Don‘t create yet another task once a certain (small
enough) n is reached

Improved parallelization with Tasking
(omp-v2)

int main(int argc,

char* argv[])

{

[...]

#pragma omp parallel

{

#pragma omp single

{

fib(input);

}

}

[...]

}

int fib(int n) {

if (n < 2) return n;

int x, y;

#pragma omp task shared(x) \

if(n > 30)

{

x = fib(n - 1);

}

#pragma omp task shared(y) \

if(n > 30)

{

y = fib(n - 2);

}

#pragma omp taskwait

return x+y;

}

RZ: Christian Terboven Folie 26

 Speedup is ok, but we still have some overhead when running with 4

or 8 threads

Scalability measurements (2/3)

0

1

2

3

4

5

6

7

8

9

1 2 4 8

Sp
e

e
d

u
p

#Threads

Speedup of Fibonacci with Tasks

optimal

omp-v1

omp-v2

RZ: Christian Terboven Folie 27

 Improvement: Skip the OpenMP overhead once a certain n

is reached (no issue w/ production compilers)

Improved parallelization with Tasking
(omp-v3)

int main(int argc,

char* argv[])

{

[...]

#pragma omp parallel

{

#pragma omp single

{

fib(input);

}

}

[...]

}

int fib(int n) {

if (n < 2) return n;

if (n <= 30)

return serfib(n);

int x, y;

#pragma omp task shared(x)

{

x = fib(n - 1);

}

#pragma omp task shared(y)

{

y = fib(n - 2);

}

#pragma omp taskwait

return x+y;

}

RZ: Christian Terboven Folie 28

 Everything ok now 

Scalability measurements (3/3)

0

1

2

3

4

5

6

7

8

9

1 2 4 8

Sp
e

e
d

u
p

#Threads

Speedup of Fibonacci with Tasks

optimal

omp-v1

omp-v2

omp-v3

RZ: Christian Terboven Folie 29

Scoping

RZ: Christian Terboven Folie 30

 Managing the Data Environment is the challenge of OpenMP.

 Scoping in OpenMP: Dividing variables in shared and private:

 private-list and shared-list on Parallel Region

 private-list and shared-list on Worksharing constructs

 General default is shared, firstprivate for Tasks.

 Loop control variables on for-constructs are private

 Non-static variables local to Parallel Regions are private

 private: A new uninitialized instance is created for each thread

 firstprivate: Initialization with Master‘s value

 lastprivate: Value of last loop iteration is written back to Master

 Static variables are shared

Scoping Rules

RZ: Christian Terboven Folie 31

 Global / static variables can be privatized with the threadprivate

directive

 One instance is created for each thread

 Before the first parallel region is encountered

 Instance exists until the program ends

 Does not work (well) with nested Parallel Region

 Based on thread-local storage (TLS)

 TlsAlloc (Win32-Threads), pthread_key_create (Posix-Threads), keyword

__thread (GNU extension)

Privatization of Global/Static Variables

C/C++

static int i;

#pragma omp threadprivate(i)

Fortran

SAVE INTEGER :: i

!$omp threadprivate(i)

RZ: Christian Terboven Folie 32

 Some rules from Parallel Regions apply:

 Static and Global variables are shared

 Automatic Storage (local) variables are private

 If shared scoping is not derived by default:

 Orphaned Task variables are firstprivate by default!

 Non-Orphaned Task variables inherit the shared attribute!

→ Variables are firstprivate unless shared in the enclosing context

 So far no verification tool is available to check Tasking programs

for correctness!

Tasks in OpenMP: Data Scoping

RZ: Christian Terboven Folie 33

Data Scoping with Tasking

Example

RZ: Christian Terboven Folie 34

int a;

void foo()

{

int b, c;

#pragma omp parallel shared(b)

#pragma omp parallel private(b)

{

int d;

#pragma omp task

{

int e;

// Scope of a:

// Scope of b:

// Scope of c:

// Scope of d:

// Scope of e:

} } }

Data Scoping Example (1/7)

RZ: Christian Terboven Folie 35

int a;

void foo()

{

int b, c;

#pragma omp parallel shared(b)

#pragma omp parallel private(b)

{

int d;

#pragma omp task

{

int e;

// Scope of a: shared

// Scope of b:

// Scope of c:

// Scope of d:

// Scope of e:

} } }

Data Scoping Example (2/7)

RZ: Christian Terboven Folie 36

int a;

void foo()

{

int b, c;

#pragma omp parallel shared(b)

#pragma omp parallel private(b)

{

int d;

#pragma omp task

{

int e;

// Scope of a: shared

// Scope of b: firstprivate

// Scope of c:

// Scope of d:

// Scope of e:

} } }

Data Scoping Example (3/7)

RZ: Christian Terboven Folie 37

int a;

void foo()

{

int b, c;

#pragma omp parallel shared(b)

#pragma omp parallel private(b)

{

int d;

#pragma omp task

{

int e;

// Scope of a: shared

// Scope of b: firstprivate

// Scope of c: shared

// Scope of d:

// Scope of e:

} } }

Data Scoping Example (4/7)

RZ: Christian Terboven Folie 38

int a;

void foo()

{

int b, c;

#pragma omp parallel shared(b)

#pragma omp parallel private(b)

{

int d;

#pragma omp task

{

int e;

// Scope of a: shared

// Scope of b: firstprivate

// Scope of c: shared

// Scope of d: firstprivate

// Scope of e:

} } }

Data Scoping Example (5/7)

RZ: Christian Terboven Folie 39

int a;

void foo()

{

int b, c;

#pragma omp parallel shared(b)

#pragma omp parallel private(b)

{

int d;

#pragma omp task

{

int e;

// Scope of a: shared

// Scope of b: firstprivate

// Scope of c: shared

// Scope of d: firstprivate

// Scope of e: private

} } }

Data Scoping Example (6/7)

RZ: Christian Terboven Folie 40

int a;

void foo()

{

int b, c;

#pragma omp parallel shared(b)

#pragma omp parallel private(b)

{

int d;

#pragma omp task

{

int e;

// Scope of a: shared

// Scope of b: firstprivate

// Scope of c: shared

// Scope of d: firstprivate

// Scope of e: private

} } }

Data Scoping Example (7/7)

Hint: Use default(none) to be
forced to think about every

variable if you do not see clear.

RZ: Christian Terboven Folie 41

Synchronization

RZ: Christian Terboven Folie 42

 Can all loops be parallelized with for-constructs? No!

 Simple test: If the results differ when the code is executed backwards, the

loop iterations are not independent. BUT: This test alone is not sufficient:

 Data Race: If between two synchronization points at least one thread

writes to a memory location from which at least one other thread

reads, the result is not deterministic (race condition).

Synchronization Overview

C/C++

int i;

#pragma omp parallel for

for (i = 0; i < 100; i++)

{

s = s + a[i];

}

RZ: Christian Terboven Folie 43

 A Critical Region is executed by all threads, but by only one thread

simultaneously (Mutual Exclusion).

 Do you think this solution scales well?

Synchronization: Critical Region

C/C++

#pragma omp critical (name)

{

... structured block ...

}

C/C++

int i;

#pragma omp parallel for

for (i = 0; i < 100; i++)

{

#pragma omp critical

{ s = s + a[i]; }

}

RZ: Christian Terboven Folie 44

#pragma omp parallel

{

#pragma omp for

for (i = 0; i < 99; i++)

{

s = s + a[i];

}

} // end parallel

It‘s your turn: Make It Scale!

do i = 0, 99

s = s + a(i)

end do

do i = 0, 24
s = s + a(i)

end do

do i = 25, 49
s = s + a(i)

end do

do i = 50, 74
s = s + a(i)

end do

do i = 75, 99
s = s + a(i)

end do

RZ: Christian Terboven Folie 45

 In a reduction-operation the operator is applied to all variables in the
list. The variables have to be shared.

 reduction(operator:list)

 The result is provided in the associated reduction variable

 Possible reduction operators with initialization value:

+ (0), * (1), - (0),

& (~0), | (0), && (1), || (0),

^ (0), min (largest number), max (least number)

The Reduction Clause

C/C++

#pragma omp parallel for reduction(+:s)

for(i = 0; i < 99; i++)

{

s = s + a[i];

}

RZ: Christian Terboven Folie 46

 OpenMP barrier (implicit or explicit)

 All tasks created by any thread of the current Team are guaranteed to be

completed at barrier exit

 Task barrier: taskwait

 Encountering Task suspends until child tasks are complete

 Only direct childs, not descendants!

The Barrier and Taskwait Constructs

C/C++

#pragma omp taskwait

C/C++

#pragma omp barrier

RZ: Christian Terboven Folie 47

 Default: Tasks are tied to the thread that first executes them → not

neccessarily the creator. Scheduling constraints:

 Only the Thread a Task is tied to can execute it

 A Task can only be suspended at a suspend point

 Task creation, Task finish, taskwait, barrier

 If Task is not suspended in a barrier, executing Thread can only switch to a

direct descendant of all Tasks tied to the Thread

 Tasks created with the untied clause are never tied

 No scheduling restrictions, e.g. can be suspended at any point

 But: More freedom to the implementation, e.g. load balancing

Tasks in OpenMP: Scheduling

RZ: Christian Terboven Folie 48

Task Synchronization

Example

RZ: Christian Terboven Folie 49

 Simple example of Task synchronization in OpenMP 3.0:

#pragma omp parallel num_threads(np)

{

#pragma omp task

function_A();

#pragma omp barrier

#pragma omp single

{

#pragma omp task

function_B();

}

}

Task synchronization

np Tasks created here, one for each thread

All Tasks guaranteed to be completed here

1 Task created here

B-Task guaranteed to be completed here

RZ: Christian Terboven Folie 50

 Problem: Because tasks can migrate between threads at any point,

thread-centric constructs can yield unexpected results

 Remember when using untied tasks:

 Avoid threadprivate variable

 Avoid and use of thread-ids (i.e. omp_get_thread_num())

 Be careful with critical region and locks

 Simple Solution:

 Create a tied task region with

#pragma omp task if(0)

Unsafe use of untied Tasks

RZ: Christian Terboven Folie 51

PI

Example

RZ: Christian Terboven Folie 52

o Simple example: calculate Pi by integration

double f(double x) {

return (double)4.0 / ((double)1.0 + (x*x));

}

void computePi() {

double h = (double)1.0 / (double)iNumIntervals;

double sum = 0, x;

#pragma omp parallel for reduction(+:sum) private(x)

for (int i = 1; i <= iNumIntervals; i++) {

x = h * ((double)i - (double)0.5);

sum += f(x);

}

myPi = h * sum;

}

Example: Pi (1/2)

dx
x 



1

0

2)1(

4

RZ: Christian Terboven Folie 53

o Simple example: calculate Pi by integration

double f(double x) {

return (double)4.0 / ((double)1.0 + (x*x));

}

void computePi() {

double h = (double)1.0 / (double)iNumIntervals;

double sum = 0, x;

#pragma omp parallel for private(x) reduction(+:sum)

for (int i = 1; i <= iNumIntervals; i++) {

x = h * ((double)i - (double)0.5);

sum += f(x);

}

myPi = h * sum;

}

Example: Pi (1/2)

dx
x 



1

0

2)1(

4

RZ: Christian Terboven Folie 54

 Results (with C++ version):

 Scalability is pretty good:

 About 100% of the runtime has been parallelized.

 As there is just one parallel region, there is virtually no overhead introduced

by the parallelization.

 Problem is parallelizable in a trival fashion ...

Example: Pi (2/2)

Threads Runtime [sec.] Speedup

1 1.11 1.00

2

4

8 0.14 7.93

RZ: Christian Terboven Folie 55

Runtime Library

RZ: Christian Terboven Folie 56

 C and C++:

 If OpenMP is enabled during compilation, the preprocessor symbol _OPENMP

is defined. To use the OpenMP runtime library, the header omp.h has to

be included.

 omp_set_num_threads(int): The specified number of threads will be

used for the parallel region encountered next.

 int omp_get_num_threads: Returns the number of threads in the

current team.

 int omp_get_thread_num(): Returns the number of the calling thread

in the team, the Master has always the id 0.

 Additional functions are available, e.g. to provide locking

functionality.

Runtime Library

RZ: Christian Terboven Folie 57

Thank you for your attention.

The End

RZ: Christian Terboven Folie 58

Appendix A: make/gmake

RZ: Christian Terboven Folie 59

 make: “smart” utility to manage compilation of programs and much more

• automatically detects which parts need to be rebuild

• general rules for compilation of many files

• dependencies between files can be handled

 Usage:

make <target> or gmake <target>

 Rules:

 target: output file (or only a name)

 prerequisites: input files (e.g. source code files)

 command: action to be performed

make / gmake

target ... : prerequisites ...

< tab > command

< tab > ...

