
Rechen- und Kommunikationszentrum (RZ)

Introduction to OpenMP

Christian Terboven <terboven@rz.rwth-aachen.de>

10.04.2013 / Darmstadt, Germany

Stand: 06.03.2013

Version 2.3



RZ: Christian Terboven Folie 2

 De-facto standard for Shared-Memory Parallelization.

 1997: OpenMP 1.0 for FORTRAN

 1998: OpenMP 1.0 for C and C++

 1999: OpenMP 1.1 for FORTRAN

(errata)

 2000: OpenMP 2.0 for FORTRAN

 2002: OpenMP 2.0 for C and C++

 2005: OpenMP 2.5 now includes

both programming languages.

 05/2008: OpenMP 3.0 release

 07/2011: OpenMP 3.1 release

 11/2012: OpenMP 4.0 RC1 + TR1

 03/2013: OpenMP 4.0 RC2

 05/2013: OpenMP 4.0 to be released

History

http://www.OpenMP.org

RWTH Aachen University is
a member of the OpenMP
Architecture Review Board
(ARB) since 2006.



RZ: Christian Terboven Folie 3

 Basic Concept: Parallel Region

 The For Construct

 The Single Construct

 The Task Construct

 Scoping: Managing the Data Environment

 The Synchronization and Reduction Constructs

 Runtime Library

Agenda



RZ: Christian Terboven Folie 4

Parallel Region



RZ: Christian Terboven Folie 5

 OpenMP programs start with

just one thread: The Master.

 Worker threads are spawned

at Parallel Regions, together

with the Master they form the

Team of threads.

 In between Parallel Regions the

Worker threads are put to sleep.

The OpenMP Runtime takes care

of all thread management work.

 Concept: Fork-Join.

 Allows for an incremental parallelization!

OpenMP Execution Model

Master Thread Serial Part

Parallel
RegionSlave 

ThreadsSlave 
ThreadsWorker
Threads

Parallel
Region

Serial Part



RZ: Christian Terboven Folie 6

 OpenMP: Shared-Memory Parallel Programming Model.

All processors/cores access

a shared main memory.

Real architectures are

more complex, as we

will see later / as we

have seen.

Parallelization in OpenMP

employs multiple threads.

OpenMP‘s machine model

Memory

Cache Cache Cache Cache

Proc Proc Proc Proc

Crossbar / Bus



RZ: Christian Terboven Folie 7

 The parallelism has to be expressed explicitly.

 Structured Block

 Exactly one entry point at the top

 Exactly one exit point at the bottom

 Branching in or out is not allowed

 Terminating the program is allowed

(abort / exit)

Parallel Region and Structured Blocks

C/C++

#pragma omp parallel

{

...

structured block

...

}

 Specification of number of threads:

 Environment variable: 

OMP_NUM_THREADS=…

 Or: Via num_threads clause:

add num_threads(num) to the

parallel construct

Fortran

!$omp parallel

...

structured block

...

$!omp end parallel



RZ: Christian Terboven Folie 8

Hello OpenMP World

Demo



RZ: Christian Terboven Folie 9

 From within a shell, global setting of the number of threads:

export OMP_NUM_THREADS=4

./program

 From within a shell, one-time setting of the number of threads:

OMP_NUM_THREADS=4   ./program

 Intel Compiler on Linux: asking for more information:

export KMP_AFFINITY=verbose

export OMP_NUM_THREADS=4

./program

Starting OpenMP Programs on Linux



RZ: Christian Terboven Folie 10

Hello orphaned World

Demo



RZ: Christian Terboven Folie 11

For Construct



RZ: Christian Terboven Folie 12

 If only the parallel construct is used, each thread executes the

Structured Block.

 Program Speedup: Worksharing

 OpenMP‘s most common Worksharing construct: for

 Distribution of loop iterations over all threads in a Team.

 Scheduling of the distribution can be influenced.

 Loops often account for most of a program‘s runtime!

For Worksharing

C/C++

int i;

#pragma omp parallel for

for (i = 0; i < 100; i++)

{

a[i] = b[i] + c[i];

}

Fortran

INTEGER :: i

!$omp parallel do

DO i = 0, 99

a[i] = b[i] + c[i];

END DO



RZ: Christian Terboven Folie 13

Worksharing illustrated

do i = 0, 99

a(i) = b(i) + c(i)

end do

do i = 0, 24

a(i) = b(i) + c(i)

end do

do i = 25, 49

a(i) = b(i) + c(i)

end do

do i = 50, 74

a(i) = b(i) + c(i)

end do

do i = 75, 99

a(i) = b(i) + c(i)

end do

A(0)
.
.
.

A(99)

B(0)
.
.
.

B(99)

C(0)
.
.
.

C(99)

MemoryPseudo-Code
Here: 4 Threads

Thread 1

Thread 2

Thread 3

Thread 4

Serial



RZ: Christian Terboven Folie 14

Vector Addition

Demo



RZ: Christian Terboven Folie 15

The Single Construct



RZ: Christian Terboven Folie 16

 The single construct specifies that the enclosed structured block is

executed by only on thread of the team.

 It is up to the runtime which thread that is.

 Useful for:

 I/O

 Memory allocation and deallocation, etc. (in general: setup work)

 Implementation of the single-creator parallel-executor pattern as we will see

now…

The Single Construct

C/C++

#pragma omp single [clause]

... structured block ...

Fortran

!$omp single [clause]

... structured block ...

!$omp end single



RZ: Christian Terboven Folie 17

Task Construct



RZ: Christian Terboven Folie 18

 Can we parallelize this code with the For-Worksharing construct?

typedef list<double> dList;

dList myList;

/* fill myList with tons of items */

dList::iterator it = myList.begin();

while (it != myList.end())

{

*it = processListItem(*it);

it++;

}

 No.

 One possibility: Create a fixed-sized array containing all list items

and a parallel loop running over this array

Concept: Inspector / Executor

How to parallelize a While-loop?



RZ: Christian Terboven Folie 19

 Or: Use Tasking in OpenMP 3.0

#pragma omp parallel

{

#pragma omp single

{

dList::iterator it = myList.begin();

while (it != myList.end())

{

#pragma omp task

{

*it = processListItem(*it);

}

it++;

}

}

}

 All while-loop iterations are independent from each other!

How to parallelize a While-loop!

This structured block will be executed by just one thread, the
other threads will skip the block and jump right to it’s end.



RZ: Christian Terboven Folie 20

 Each encountering thread/task creates a new Task

 Code and data is being packaged up

 Tasks can be nested

 Into another Task directive

 Into a Worksharing construct

 Data scoping clauses:

 shared(list)

 private(list) firstprivate(list)

 default(shared | none)

The Task Construct

C/C++

#pragma omp task [clause]

... structured block ...

Fortran

!$omp task [clause]

... structured block ...

!$omp end task



RZ: Christian Terboven Folie 21

Fibonacci

Case Study



RZ: Christian Terboven Folie 22

 On the following slides we will discuss three approaches to

parallelize this recursive code with Tasking.

Recursive approach to compute Fibonacci

int main(int argc,

char* argv[])

{

[...]

fib(input);

[...]

}

int fib(int n)   {

if (n < 2) return n;

int x = fib(n - 1);

int y = fib(n - 2);

return x+y;

}



RZ: Christian Terboven Folie 23

o Only one Task / Thread enters fib() from main(), it is responsable 

for creating the two initial work tasks

o Taskwait is required, as otherwise x and y would be lost

First version parallelized with Tasking
(omp-v1)

int main(int argc,

char* argv[])

{

[...]

#pragma omp parallel

{

#pragma omp single

{

fib(input);

}

}

[...]

}

int fib(int n)   {

if (n < 2) return n;

int x, y;

#pragma omp task shared(x)

{

x = fib(n - 1);

}

#pragma omp task shared(y)

{

y = fib(n - 2);

}

#pragma omp taskwait

return x+y;

}



RZ: Christian Terboven Folie 24

 Overhead of task creation prevents better scalability!

Scalability measurements (1/3)

0

1

2

3

4

5

6

7

8

9

1 2 4 8

Sp
e

e
d

u
p

#Threads

Speedup of Fibonacci with Tasks

optimal

omp-v1



RZ: Christian Terboven Folie 25

 Improvement: Don‘t create yet another task once a certain (small
enough) n is reached

Improved parallelization with Tasking
(omp-v2)

int main(int argc,

char* argv[])

{

[...]

#pragma omp parallel

{

#pragma omp single

{

fib(input);

}

}

[...]

}

int fib(int n)   {

if (n < 2) return n;

int x, y;

#pragma omp task shared(x) \

if(n > 30)

{

x = fib(n - 1);

}

#pragma omp task shared(y) \

if(n > 30)

{

y = fib(n - 2);

}

#pragma omp taskwait

return x+y;

}



RZ: Christian Terboven Folie 26

 Speedup is ok, but we still have some overhead when running with 4 

or 8 threads

Scalability measurements (2/3)

0

1

2

3

4

5

6

7

8

9

1 2 4 8

Sp
e

e
d

u
p

#Threads

Speedup of Fibonacci with Tasks

optimal

omp-v1

omp-v2



RZ: Christian Terboven Folie 27

 Improvement: Skip the OpenMP overhead once a certain n

is reached (no issue w/ production compilers) 

Improved parallelization with Tasking
(omp-v3)

int main(int argc,

char* argv[])

{

[...]

#pragma omp parallel

{

#pragma omp single

{

fib(input);

}

}

[...]

}

int fib(int n)   {

if (n < 2) return n;

if (n <= 30)

return serfib(n);

int x, y;

#pragma omp task shared(x)

{

x = fib(n - 1);

}

#pragma omp task shared(y)

{

y = fib(n - 2);

}

#pragma omp taskwait

return x+y;

}



RZ: Christian Terboven Folie 28

 Everything ok now 

Scalability measurements (3/3)

0

1

2

3

4

5

6

7

8

9

1 2 4 8

Sp
e

e
d

u
p

#Threads

Speedup of Fibonacci with Tasks

optimal

omp-v1

omp-v2

omp-v3



RZ: Christian Terboven Folie 29

Scoping



RZ: Christian Terboven Folie 30

 Managing the Data Environment is the challenge of OpenMP.

 Scoping in OpenMP: Dividing variables in shared and private:

 private-list and shared-list on Parallel Region

 private-list and shared-list on Worksharing constructs

 General default is shared, firstprivate for Tasks.

 Loop control variables on for-constructs are private

 Non-static variables local to Parallel Regions are private

 private: A new uninitialized instance is created for each thread

 firstprivate: Initialization with Master‘s value

 lastprivate: Value of last loop iteration is written back to Master

 Static variables are shared

Scoping Rules



RZ: Christian Terboven Folie 31

 Global / static variables can be privatized with the threadprivate

directive

 One instance is created for each thread

 Before the first parallel region is encountered

 Instance exists until the program ends

 Does not work (well) with nested Parallel Region

 Based on thread-local storage (TLS)

 TlsAlloc (Win32-Threads), pthread_key_create (Posix-Threads), keyword

__thread (GNU extension)

Privatization of Global/Static Variables

C/C++

static int i;

#pragma omp threadprivate(i)

Fortran

SAVE INTEGER :: i

!$omp threadprivate(i)



RZ: Christian Terboven Folie 32

 Some rules from Parallel Regions apply:

 Static and Global variables are shared

 Automatic Storage (local) variables are private

 If shared scoping is not derived by default:

 Orphaned Task variables are firstprivate by default!

 Non-Orphaned Task variables inherit the shared attribute!

→ Variables are firstprivate unless shared in the enclosing context

 So far no verification tool is available to check Tasking programs

for correctness!

Tasks in OpenMP: Data Scoping



RZ: Christian Terboven Folie 33

Data Scoping with Tasking

Example



RZ: Christian Terboven Folie 34

int a;

void foo()

{

int b, c;

#pragma omp parallel shared(b)

#pragma omp parallel private(b)

{

int d;

#pragma omp task

{

int e;

// Scope of a:

// Scope of b:

// Scope of c:

// Scope of d:

// Scope of e:

} } }

Data Scoping Example (1/7)



RZ: Christian Terboven Folie 35

int a;

void foo()

{

int b, c;

#pragma omp parallel shared(b)

#pragma omp parallel private(b)

{

int d;

#pragma omp task

{

int e;

// Scope of a: shared

// Scope of b:

// Scope of c:

// Scope of d:

// Scope of e:

} } }

Data Scoping Example (2/7)



RZ: Christian Terboven Folie 36

int a;

void foo()

{

int b, c;

#pragma omp parallel shared(b)

#pragma omp parallel private(b)

{

int d;

#pragma omp task

{

int e;

// Scope of a: shared

// Scope of b: firstprivate

// Scope of c:

// Scope of d:

// Scope of e:

} } }

Data Scoping Example (3/7)



RZ: Christian Terboven Folie 37

int a;

void foo()

{

int b, c;

#pragma omp parallel shared(b)

#pragma omp parallel private(b)

{

int d;

#pragma omp task

{

int e;

// Scope of a: shared

// Scope of b: firstprivate

// Scope of c: shared

// Scope of d:

// Scope of e:

} } }

Data Scoping Example (4/7)



RZ: Christian Terboven Folie 38

int a;

void foo()

{

int b, c;

#pragma omp parallel shared(b)

#pragma omp parallel private(b)

{

int d;

#pragma omp task

{

int e;

// Scope of a: shared

// Scope of b: firstprivate

// Scope of c: shared

// Scope of d: firstprivate

// Scope of e:

} } }

Data Scoping Example (5/7)



RZ: Christian Terboven Folie 39

int a;

void foo()

{

int b, c;

#pragma omp parallel shared(b)

#pragma omp parallel private(b)

{

int d;

#pragma omp task

{

int e;

// Scope of a: shared

// Scope of b: firstprivate

// Scope of c: shared

// Scope of d: firstprivate

// Scope of e: private

} } }

Data Scoping Example (6/7)



RZ: Christian Terboven Folie 40

int a;

void foo()

{

int b, c;

#pragma omp parallel shared(b)

#pragma omp parallel private(b)

{

int d;

#pragma omp task

{

int e;

// Scope of a: shared

// Scope of b: firstprivate

// Scope of c: shared

// Scope of d: firstprivate

// Scope of e: private

} } }

Data Scoping Example (7/7)

Hint: Use default(none) to be 
forced to think about every 

variable if you do not see clear.



RZ: Christian Terboven Folie 41

Synchronization



RZ: Christian Terboven Folie 42

 Can all loops be parallelized with for-constructs? No!

 Simple test: If the results differ when the code is executed backwards, the

loop iterations are not independent. BUT: This test alone is not sufficient:

 Data Race: If between two synchronization points at least one thread

writes to a memory location from which at least one other thread

reads, the result is not deterministic (race condition).

Synchronization Overview

C/C++

int i;

#pragma omp parallel for

for (i = 0; i < 100; i++)

{

s = s + a[i];

}



RZ: Christian Terboven Folie 43

 A Critical Region is executed by all threads, but by only one thread

simultaneously (Mutual Exclusion).

 Do you think this solution scales well?

Synchronization: Critical Region

C/C++

#pragma omp critical (name)

{

... structured block ...

}

C/C++

int i;

#pragma omp parallel for

for (i = 0; i < 100; i++)

{

#pragma omp critical

{ s = s + a[i];  }

}



RZ: Christian Terboven Folie 44

#pragma omp parallel              

{

#pragma omp for

for (i = 0; i < 99; i++)

{   

s    = s    + a[i]; 

}

} // end parallel

It‘s your turn: Make It Scale!

do i = 0, 99

s = s + a(i)

end do

do i = 0, 24
s = s + a(i)

end do

do i = 25, 49
s = s + a(i)

end do

do i = 50, 74
s = s + a(i)

end do

do i = 75, 99
s = s + a(i)

end do



RZ: Christian Terboven Folie 45

 In a reduction-operation the operator is applied to all variables in the
list. The variables have to be shared.

 reduction(operator:list)

 The result is provided in the associated reduction variable

 Possible reduction operators with initialization value:

+ (0), * (1), - (0),

& (~0), | (0), && (1), || (0),

^ (0), min (largest number), max (least number)

The Reduction Clause

C/C++

#pragma omp parallel for reduction(+:s)

for(i = 0; i < 99; i++)

{

s = s + a[i];

}



RZ: Christian Terboven Folie 46

 OpenMP barrier (implicit or explicit)

 All tasks created by any thread of the current Team are guaranteed to be

completed at barrier exit

 Task barrier: taskwait

 Encountering Task suspends until child tasks are complete

 Only direct childs, not descendants!

The Barrier and Taskwait Constructs

C/C++

#pragma omp taskwait

C/C++

#pragma omp barrier



RZ: Christian Terboven Folie 47

 Default: Tasks are tied to the thread that first executes them → not 

neccessarily the creator. Scheduling constraints:

 Only the Thread a Task is tied to can execute it

 A Task can only be suspended at a suspend point

 Task creation, Task finish, taskwait, barrier

 If Task is not suspended in a barrier, executing Thread can only switch to a 

direct descendant of all Tasks tied to the Thread

 Tasks created with the untied clause are never tied

 No scheduling restrictions, e.g. can be suspended at any point

 But: More freedom to the implementation, e.g. load balancing

Tasks in OpenMP: Scheduling



RZ: Christian Terboven Folie 48

Task Synchronization

Example



RZ: Christian Terboven Folie 49

 Simple example of Task synchronization in OpenMP 3.0:

#pragma omp parallel num_threads(np)

{

#pragma omp task

function_A();

#pragma omp barrier

#pragma omp single

{

#pragma omp task

function_B();

}

}

Task synchronization

np Tasks created here, one for each thread

All Tasks guaranteed to be completed here

1 Task created here

B-Task guaranteed to be completed here



RZ: Christian Terboven Folie 50

 Problem: Because tasks can migrate between threads at any point, 

thread-centric constructs can yield unexpected results

 Remember when using untied tasks:

 Avoid threadprivate variable

 Avoid and use of thread-ids (i.e. omp_get_thread_num())

 Be careful with critical region and locks

 Simple Solution:

 Create a tied task region with

#pragma omp task if(0)

Unsafe use of untied Tasks



RZ: Christian Terboven Folie 51

PI

Example



RZ: Christian Terboven Folie 52

o Simple example: calculate Pi by integration

double f(double x) {

return (double)4.0 / ((double)1.0 + (x*x));

}

void computePi() {

double h = (double)1.0 / (double)iNumIntervals;

double sum = 0, x;

#pragma omp parallel for reduction(+:sum) private(x)

for (int i = 1; i <= iNumIntervals; i++) {

x = h * ((double)i - (double)0.5);

sum += f(x);

}

myPi = h * sum;

}

Example: Pi (1/2)

dx
x 



1

0

2 )1(

4



RZ: Christian Terboven Folie 53

o Simple example: calculate Pi by integration

double f(double x) {

return (double)4.0 / ((double)1.0 + (x*x));

}

void computePi() {

double h = (double)1.0 / (double)iNumIntervals;

double sum = 0, x;

#pragma omp parallel for private(x) reduction(+:sum)

for (int i = 1; i <= iNumIntervals; i++) {

x = h * ((double)i - (double)0.5);

sum += f(x);

}

myPi = h * sum;

}

Example: Pi (1/2)

dx
x 



1

0

2 )1(

4



RZ: Christian Terboven Folie 54

 Results (with C++ version):

 Scalability is pretty good:

 About 100% of the runtime has been parallelized.

 As there is just one parallel region, there is virtually no overhead introduced

by the parallelization.

 Problem is parallelizable in a trival fashion ...

Example: Pi (2/2)

# Threads Runtime [sec.] Speedup

1 1.11 1.00

2

4

8 0.14 7.93



RZ: Christian Terboven Folie 55

Runtime Library



RZ: Christian Terboven Folie 56

 C and C++:

 If OpenMP is enabled during compilation, the preprocessor symbol _OPENMP

is defined. To use the OpenMP runtime library, the header omp.h has to

be included.

 omp_set_num_threads(int): The specified number of threads will be

used for the parallel region encountered next.

 int omp_get_num_threads: Returns the number of threads in the

current team.

 int omp_get_thread_num(): Returns the number of the calling thread

in the team, the Master has always the id 0.

 Additional functions are available, e.g. to provide locking

functionality.

Runtime Library



RZ: Christian Terboven Folie 57

Thank you for your attention.

The End



RZ: Christian Terboven Folie 58

Appendix A: make/gmake



RZ: Christian Terboven Folie 59

 make: “smart” utility to manage compilation of programs and much more

• automatically detects which parts need to be rebuild

• general rules for compilation of many files

• dependencies between files can be handled

 Usage:

make <target>  or  gmake <target>

 Rules:

 target: output file (or only a name)

 prerequisites: input files (e.g. source code files)

 command: action to be performed

make / gmake

target ... : prerequisites ...            

< tab > command            

< tab > ...             


