
05.08.2013 | FB. Computer Science | Scientific Computing | Christian Iwainsky | 1

MPI-Performance Analysis

Vampir

05.08.2013 | FB. Computer Science | Scientific Computing | Christian Iwainsky | 2

How does one gain insight about an HPC

applciation?

Data has to be presented to the developer in an understandable way in

order to gain insight!

• Data can be broken up

• by time

• Example: Function entries and exits are displayed on a timeline

• attributed to graphs representing properties of the source code

• Example: Display function execution times on the call graph

• etc…

05.08.2013 | FB. Computer Science | Scientific Computing | Christian Iwainsky | 3

Introduction to Vampir

Overview of Vampir

How to use Vampir

05.08.2013 | FB. Computer Science | Scientific Computing | Christian Iwainsky | 4

Overview of Vampir

Facts about Vampir

Actually a tool collection

• Vampir Trace freely available

• Vampir GUI commercial

Developed at the TU Dresden

Many additional recording capabilities

• Memory Usage

• I/O Activity Tracing

• CPU-counters

05.08.2013 | FB. Computer Science | Scientific Computing | Christian Iwainsky | 5

Prepare your environment

Vampir-trace

Vampir (GUI)

Note:

• Vampir-Trace is not necessary for visualization of data

• The Vampir module must be loaded for analysis

module load vampirtrace

module load vampir

05.08.2013 | FB. Computer Science | Scientific Computing | Christian Iwainsky | 6

How to use

To use Vampir the following steps are necessary:

1. Select the correct compiler wrapper

C:

C++:

Fortran:

2. Instrument your application by recompiling it

vtcxx -vt:cxx

vtcc -vt:cc

vtf90 -vt:f90

vtf77 -vt:f77

vtcc –vt:cc gcc hello.c –o hello.exe

05.08.2013 | FB. Computer Science | Scientific Computing | Christian Iwainsky | 7

How to use

3. Execute as usual

4. Analyze application

 vampir vtrace.otf

$MPIEXEC -np 2 hello.exe

Results in a OTF-file

05.08.2013 | FB. Computer Science | Scientific Computing | Christian Iwainsky | 8

Interlude #1:

Measurement Basics

Two independent decisions:

1. When performance is measurement triggered

• Sampling

• Triggered by timer interrupt or by hardware counter overflow

• Can measure unmodified executables, potential low overhead

• Code instrumentation:

• Triggered by “instrumentation hooks” inserted into the code

• Insertion can be done manually or automatically

2. How performance is data recorded

• Profile ::= Summarization of events over time

• run time summarization (functions, call sites, loops, …)

• Trace file ::= Sequence of events over time

05.08.2013 | FB. Computer Science | Scientific Computing | Christian Iwainsky | 9

To explain the differences:

main(..)

{

for (i=1..3)

{

 foo(i)

 }

}

foo(i)

{

 if (i>0) foo(i-1)

}

main foo(1) foo(2) foo(3)

Time

A study of a short example program

05.08.2013 | FB. Computer Science | Scientific Computing | Christian Iwainsky | 10

Example: Sampling

main foo(1) foo(2) foo(3)

Time

t1 t2 t3 t5 t4 t6 t7 t8 t9

t0: begin

t1: main

t2: foo(1)

t3: main

t4: foo(2)

t5: foo(1)

t6: foo(3)

t7: foo(2)

t8: foo(1)

t9: main

t10: end

05.08.2013 | FB. Computer Science | Scientific Computing | Christian Iwainsky | 11

Summary: Sampling

Sampling:

 The application is probed at specific times and a set of interesting

metrics is gathered

Advantages:

+ Low perturbance of the application

+ Application does not have to be recompiled

+ Works well with large and long running applications

Disadvantages:

- Not very detailed information on high frequency metrics

05.08.2013 | FB. Computer Science | Scientific Computing | Christian Iwainsky | 12

Example: Instrumentation

main foo(1) foo(2) foo(3)

Time

t00: begin

t01: main

t02: foo(1)

t03: main

t04: foo(2)

t05: foo(1)

t06: foo(2)

t07: main

t08: foo(3)

t09: foo(2)

t10: foo(1)

t11: foo(2)

t12: foo(3)

t13: main

t14: end

measurement

05.08.2013 | FB. Computer Science | Scientific Computing | Christian Iwainsky | 13

Summary: Instrumentation

Idea:

 The code is instrumented such that every interesting event is

recorded as it occurs.

Advantages:

+ Every event of interest can be captured

+ Much more detailed information possible

Disadvantages:

- Preprocessing of the program necessary

- Probably expensive at runtime

05.08.2013 | FB. Computer Science | Scientific Computing | Christian Iwainsky | 14

Critical issues

Accuracy

• Perturbation

Measurement alters program behaviour

• Intrusion overhead

Measurement itself needs time and thus lowers performance

• Accuracy of timers, counters

Granularity

• How many measurements

• How much information / work during each measurement

Trade-off: Accuracy  Expressiveness of data

05.08.2013 | FB. Computer Science | Scientific Computing | Christian Iwainsky | 15

Vampir - Main Window

1) Overview Timeline

2) „Master“ Timline

3) Function Summary

1

2 3

Function Summary:

• all data is grouped

• aggregated for all

processes

To Access a pannels

options: Right Click in

the Window

05.08.2013 | FB. Computer Science | Scientific Computing | Christian Iwainsky | 16

Important Vampir Charts

Main Charts

1) Master Timeline

2) Process Timeline

3) Counter Timeline

4) Function Summary

5) Message Summary

6) Process Summary

7) Communication Matrix

8) Call Tree

05.08.2013 | FB. Computer Science | Scientific Computing | Christian Iwainsky | 17

Master Timeline

• Timeline for every

process (and thread)

Possible Options:

• Vertical Zooming

• Horizontal Zooming

• Vertical / Horizontal

Panning

05.08.2013 | FB. Computer Science | Scientific Computing | Christian Iwainsky | 18

Master Timeline (more detail)

Single FASTEST

Iteration

Solving of Mass

Transport/ Flow

Equation

Solving of Mass

Transport/ Flow

Equation

05.08.2013 | FB. Computer Science | Scientific Computing | Christian Iwainsky | 19

Master Timeline (even more detail)

An MPI Message

MPI Functions

are RED

User Functions

are GREEN

05.08.2013 | FB. Computer Science | Scientific Computing | Christian Iwainsky | 20

Process Timeline

Call Stack Depth

05.08.2013 | FB. Computer Science | Scientific Computing | Christian Iwainsky | 21

Interlude #2:

What are Hardware Performance Counter?

• Hardware Performance Counter (Wikipedia):

… a set of (programmable) special-purpose registers built into

modern microprocessors to store the counts of hardware-related

activities within computer systems …

• What do they do?

Example MEGAFLOPS

• MEGA = Million (106)

• FLOPS = FLoatingpoint Operations Per Second

• Tell the CPU to count the number of floating point operations

05.08.2013 | FB. Computer Science | Scientific Computing | Christian Iwainsky | 22

Excerpt of available counters

Nehalem X5570

• Level 1 data cache misses

• Level 1 instruction cache misses

• Level 2 data cache misses

• Level 2 instruction cache misses

• Level 3 data cache misses

• Level 3 instruction cache misses

• Level 1 cache misses

• Level 2 cache misses

• Level 3 cache misses

• Requests for a snoop

• Requests for exclusive access to shared cache line

• Requests for exclusive access to clean cache line

• Requests for cache line invalidation

• Requests for cache line intervention

• Level 3 load misses

• Level 3 store misses

• Cycles branch units are idle

• Cycles integer units are idle

• Cycles floating point units are idle

• Cycles load/store units are idle

• Data translation lookaside buffer misses

• Instruction translation lookaside buffer misses

• Total translation lookaside buffer misses

• Level 1 store misses

• Level 1 load misses

• Level 2 load misses

• Level 2 store misses

• Branch target address cache misses

• Data prefetch cache misses

• Level 3 data cache hits

• Translation lookaside buffer shootdowns

• Failed store conditional instructions

• Successful store conditional instructions

• Total store conditional instructions

• Cycles Stalled Waiting for memory accesses

• Cycles Stalled Waiting for memory Reads

• Cycles Stalled Waiting for memory writes

• Cycles with no instruction issue

• Cycles with maximum instruction issue

• Cycles with no instructions completed

• Cycles with maximum instructions completed

• Hardware interrupts

• Unconditional branch instructions

• Conditional branch instructions

• Conditional branch instructions taken

• Conditional branch instructions not taken

• Conditional branch instructions mispredicted

• Conditional branch instructions correctly predicted

• FMA instructions completed

05.08.2013 | FB. Computer Science | Scientific Computing | Christian Iwainsky | 23

Excerpt of available counters

Nehalem X5570

• Level 3 instruction cache hits

• Level 1 instruction cache accesses

• Level 2 instruction cache accesses

• Level 3 instruction cache accesses

• Level 1 instruction cache reads

• Level 2 instruction cache reads

• Level 3 instruction cache reads

• Level 1 instruction cache writes

• Level 2 instruction cache writes

• Level 3 instruction cache writes

• Level 1 total cache hits

• Level 2 total cache hits

• Level 3 total cache hits

• Level 1 total cache accesses

• Level 2 total cache accesses

• Level 3 total cache accesses

• Level 1 total cache reads

• Level 2 total cache reads

• Level 3 total cache reads

• Level 1 total cache writes

• Level 2 total cache writes

• Level 3 total cache writes

• Floating point multiply instructions

• Floating point add instructions

• Floating point divide instructions

• Instructions issued

• Instructions completed

• Integer instructions

• Floating point instructions

• Load instructions

• Store instructions

• Branch instructions

• Vector/SIMD instructions (could include integer)

• Cycles stalled on any resource

• Cycles the FP unit(s) are stalled

• Total cycles

• Load/store instructions completed

• Synchronization instructions completed

• Level 1 data cache hits

• Level 2 data cache hits

• Level 1 data cache accesses

• Level 2 data cache accesses

• Level 3 data cache accesses

• Level 1 data cache reads

• Level 2 data cache reads

• Level 3 data cache reads

• Level 1 data cache writes

• Level 2 data cache writes

• Level 3 data cache writes

• Level 1 instruction cache hits

• Level 2 instruction cache hits

05.08.2013 | FB. Computer Science | Scientific Computing | Christian Iwainsky | 24

Excerpt of available counters

Nehalem X5570

• Floating point square root instructions

• Floating point inverse instructions

• Floating point operations

• Floating point operations; optimized to count scaled single

precision vector operations

• Floating point operations; optimized to count scaled double

precision vector operations

• Single precision vector/SIMD instructions

• Double precision vector/SIMD instructions

05.08.2013 | FB. Computer Science | Scientific Computing | Christian Iwainsky | 25

Counter Timeline

Lots of data processing in

preparation of MPI

communication

05.08.2013 | FB. Computer Science | Scientific Computing | Christian Iwainsky | 26

Function Summary

05.08.2013 | FB. Computer Science | Scientific Computing | Christian Iwainsky | 27

Message Summary

& Process Summary

05.08.2013 | FB. Computer Science | Scientific Computing | Christian Iwainsky | 28

Call Tree

05.08.2013 | FB. Computer Science | Scientific Computing | Christian Iwainsky | 29

Vampir also provides runtime filtering

capabilities

1. Define a filter file in the environment variable

 export VT_FILTER_SPEC=~/myFilter

2. The filter file contains a list of functions names with a limit

3. Execute your application as usual

