
M
it
g
lie

d
 d

e
r 

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft
 

Challenges of the Exascale era 

… and how tools can help 

2013-04-09 | Markus Geimer 

    Jülich Supercomputing Centre 

    m.geimer@fz-juelich.de 



M
it
g
lie

d
 d

e
r 

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft
 

■ Moore's law is still in charge, but 

■ Clock rates no longer increase 

since a couple of years 

■ Performance gains only through 

increased parallelism 

■ Optimization of applications more 

difficult due to increasing machine 

complexity 

■ Hierarchical networks / memory 

■ More CPUs / multi-core / 

accelerators 

2013-04-09 HiPerCH Workshop, Darmstadt 2 

The “free lunch” is over 



M
it
g
lie

d
 d

e
r 

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft
 

Personal motivation (I) 

JUGENE 

72 rack IBM BlueGene/P 

294,912 cores 

Most parallel system 

in the world 

06/2009 to 06/2011 !!! 

07 / 2012 

2013-04-09 HiPerCH Workshop, Darmstadt 3 



M
it
g
lie

d
 d

e
r 

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft
 

Personal motivation (II) 

2013-04-09 HiPerCH Workshop, Darmstadt 4 

JUQUEEN 

28 rack IBM BlueGene/Q 

458,752 cores 

1,835,008 HW threads 



M
it
g
lie

d
 d

e
r 

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft
 

* From http://www.exascale.org 

System attributes    2010 “2015” “2018” Difference 
2010 & 2018 

System peak 2 Pflop/s 200 Pflop/s 1 Eflop/sec O(1000) 

Power 6 MW 15 MW ~20 MW 

System memory 0.3 PB 5 PB 32-64 PB O(100) 

Node 
performance 

125 GF 0.5 TF 7 TF 1 TF 10 TF O(10) –     
O(100) 

Node memory 
bandwidth 

25 GB/s 0.1 TB/sec 1 TB/sec 0.4 TB/sec 4 TB/sec O(100) 

Node 
concurrency 

12 O(100) O(1,000) O(1,000) O(10,000) O(100) –   
O(1000) 

Total Concurrency 225,000 O(108) O(109) O(10,000) 

Total Node 
Interconnect BW 

1.5 GB/s 20 GB/sec 200 GB/sec O(100) 

MTTI days O(1day) O(1 day) - O(10) 

Projection for an Exascale system* 



M
it
g
lie

d
 d

e
r 

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft
 

 Exascale systems will consist of 

 Complex configurations 

 With a huge number of components 

 Very likely heterogeneous 

 

 Deep software hierarchies of large, complex software 

components will be required to make use of such systems 

 

Operating systems, runtime & I/O systems, programming 

models, compilers, frameworks & libraries, debuggers & 

performance analysis tools, … 

 

Exascale performance challenges 

2013-04-09 HiPerCH Workshop, Darmstadt 6 



M
it
g
lie

d
 d

e
r 

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft
 

 Performance-aware design, development and deployment of 

hardware and software necessary 

 

 Integration with OS, compilers, middleware and runtime 

systems required 

 

 Support for performance observability in HW and SW (runtime) 

needed 

 

 Enable performance measurement and optimization in case of 

HW and SW changes due to faults or power adaptation  

 

Cross-cutting considerations 

2013-04-09 HiPerCH Workshop, Darmstadt 7 



M
it
g
lie

d
 d

e
r 

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft
 

 Heterogeneity 

 General purpose CPUs, specialized cores, accelerators, … 

 Extreme concurrency 

 On various levels: 

 SIMD 

 Multi-/Many-core 

 Interconnected nodes 

 Perturbation and data volume 

 Resilience 

 Input / Output 

 

Technical challenges 

2013-04-09 HiPerCH Workshop, Darmstadt 8 



M
it
g
lie

d
 d

e
r 

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft
 

The basics 
(First make it right…) 



M
it
g
lie

d
 d

e
r 

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft
 

 Know the available optimization flags 

 In particular: inter-procedural and architecture-specific 
optimizations 

 Increase warning level 

 … and take these warnings serious  

 Perform some runs with runtime checks turned on 

 With production workloads! 

 Especially array bounds checking 

 GCC 4.8 and Clang 3.2 also come with integrated 
memory error and data race detectors 

 But you can also assist the compiler 

 Function prototypes, modules & interfaces, const correctness, 
intent specifiers, compiler-specific attributes 

2013-04-09 HiPerCH Workshop, Darmstadt 10 

The often forgotten “tool”: The compiler 



M
it
g
lie

d
 d

e
r 

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft
 

 Can detect errors a compiler doesn’t detect, e.g., 

 NULL pointer dereferences, bounds checking, memory 

leaks, variable scoping, unused functions, portability issues 

 … but sometimes suffer from false positives 

 Not available for Fortran (to the best of my knowledge) 

 Open-source examples: 

 Cppcheck (C++), Clang static analyzer (C/C++/ObjC), 

Splint (C) 

 Commercial examples: 

 FlexeLint (C/C++), Coverity (C/C++/C#/Java), 

Insure++ (C/C++) 

2013-04-09 HiPerCH Workshop, Darmstadt 11 

Static code analysis 



M
it
g
lie

d
 d

e
r 

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft
 

 Can detect errors such as 

 Memory leaks 

 Memory corruption 

 Allocation/deallocation API mismatches 

 Open-source example: 

 Valgrind’s “memcheck” tool 

 Commercial example: 

 Intel Inspector XE 

2013-04-09 HiPerCH Workshop, Darmstadt 12 

Memory error checking 



M
it
g
lie

d
 d

e
r 

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft
 

Going parallel 
(Still making it right…) 



M
it
g
lie

d
 d

e
r 

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft
 

 Check for correct MPI usage at runtime 

 Conformance to MPI standard 

 Parameters passed to MPI 

 MPI resource usage 

 Detect deadlocks 

 Open-source example: 

 MUST 

 Developed by TU Dresden, LLNL & LANL 

 http://tu-dresden.de/zih/must/ 

2013-04-09 HiPerCH Workshop, Darmstadt 14 

MPI correctness checking (I) 



M
it
g
lie

d
 d

e
r 

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft
 

 Open MPI provides (limited) MPI parameter checking 

 Also interfaces with Valgrind to detect MPI-specific memory 

errors at runtime, e.g., 

 Accessing buffer under control of non-blocking 

communication 

 Wrong input parameters (e.g., wrongly sized send buffers) 

 Uninitialized input buffers 

2013-04-09 HiPerCH Workshop, Darmstadt 15 

MPI correctness checking (II) 



M
it
g
lie

d
 d

e
r 

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft
 

 Getting multi-threaded codes right is non-trivial! 

 Automatic thread error detectors can help identify 

 Data races 

 Potential deadlocks 

 Even if they don’t show up within your environment and under 
your typical workload! 

 Open-source example: 

 Valgrind’s “hellgrind” and “DRD” (data race detector) tools 

 Commercial/closed-source examples: 

 Intel Inspector XE 

 Oracle Thread Analyzer 

2013-04-09 HiPerCH Workshop, Darmstadt 16 

Threading error detection 



M
it
g
lie

d
 d

e
r 

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft
 

 Using printf() for debugging is cumbersome with parallel 

applications  

 Better use full-featured or specialized debuggers 

 Open-source examples: 

 GDB integration in Eclipse 

 Scales up to a few hundred processes 

 STAT: scalable collection of stack traces 

 Commercial examples: 

 RogueWave TotalView 

 Allinea DDT 

2013-04-09 HiPerCH Workshop, Darmstadt 17 

Parallel debugging 



M
it
g
lie

d
 d

e
r 

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft
 

Performance analysis, 

optimization and scaling 
(Then make it fast…) 



M
it
g
lie

d
 d

e
r 

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft
 

■ Successful performance engineering is a combination of 

■ The right algorithms and libraries 

■ Compiler flags and directives 

■ Thinking !!! 

■ Measurement is better than guessing 

■ To determine performance bottlenecks 

■ To compare alternatives 

■ To validate tuning decisions and optimizations 

 After each step! 

 Every doubling of scale reveals a new bottleneck! 

19 

Tuning basics 

2013-04-09 HiPerCH Workshop, Darmstadt 



M
it
g
lie

d
 d

e
r 

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft
 

20 

Example: XNS wait-state analysis on BG/L (2007) 

2013-04-09 HiPerCH Workshop, Darmstadt 



M
it
g
lie

d
 d

e
r 

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft
 

2013-04-09 HiPerCH Workshop, Darmstadt 21 

Example: Sweep3D wait-state analysis on BG/P (2010) 



M
it
g
lie

d
 d

e
r 

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft
 

■ “Sequential” factors 

■ Computation 

Choose right algorithm, use optimizing compiler 

■ Cache and memory 

Tough! Only limited tool support, hope compiler gets it right 

■ Input / output 

Often not given enough attention, but extremely important 

at scale! 

22 

Performance factors of parallel applications (I) 

2013-04-09 HiPerCH Workshop, Darmstadt 



M
it
g
lie

d
 d

e
r 

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft
 

■ “Parallel” factors 

■ Partitioning / decomposition 

■ Communication (i.e., message passing) 

■ Multithreading 

■ Synchronization / locking 

More or less understood, good tool support 

 

23 

Performance factors of parallel applications (II) 

2013-04-09 HiPerCH Workshop, Darmstadt 



M
it
g
lie

d
 d

e
r 

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft
 

 Important to achieve good node-level performance 

 Some tools can help identifying memory issues, such as 

 Cache utilization 

 False sharing 

 Suboptimal prefetching 

 NUMA effects 

 Open-source examples: 

 Valgrind’s “cachegrind” and “callgrind” tools 

 KCachegrind (GUI) 

 Commercial examples: 

 RogueWave ThreadSpotter 

 Intel Amplifier XE 

2013-04-09 HiPerCH Workshop, Darmstadt 24 

Memory / cache optimization 



M
it
g
lie

d
 d

e
r 

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft
 

 Profile: 

 Records aggregated information 

 Data volume (more or less) independent of program runtime 

 Shows distribution of metrics (e.g., time or visits) across 

routines or call-paths 

 Sufficient to find computational hot spots 

 Open-source examples: 

 HPCToolkit (Rice University) 

 TAU (U. of Oregon) 

 Score-P (community project, see http://www.score-p.org) 

2013-04-09 HiPerCH Workshop, Darmstadt 25 

Scalable profiling 



M
it
g
lie

d
 d

e
r 

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft
 

2013-04-09 HiPerCH Workshop, Darmstadt 26 

Example: TAU 



M
it
g
lie

d
 d

e
r 

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft
 

■ Trace: 

■ Records chronologically ordered sequence of events 

(e.g., enter/leave of a function, send/receive of a message) 

■ Abstract execution model on level of defined events 

■ Data volume dependent on runtime, scale, and level of 

detail 

■ Open-source examples: 

■ Extrae / Paraver (BSC) 

■ Score-P 

■ Commercial examples: 

■ Intel Trace Collector & Analyzer 

27 

Scalable tracing for in-depth analysis 

 

2013-04-09 HiPerCH Workshop, Darmstadt 



M
it
g
lie

d
 d

e
r 

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft
 

■ Tracing advantages 

■ Event traces preserve the temporal and spatial relationships 
among individual events ( context) 

■ Allows reconstruction of dynamic application behavior on any 
required level of abstraction 

■ Most general measurement technique 

■ Profile data can be reconstructed from event traces 

■ Disadvantages 

■ Traces can very quickly become extremely large 

■ Writing events to file at runtime causes perturbation 

■ Writing tracing software is complicated 

■ Event buffering, clock synchronization, ... 

28 

Tracing vs. profiling 

2013-04-09 HiPerCH Workshop, Darmstadt 



M
it
g
lie

d
 d

e
r 

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft
 

 Allows for an 

in-depth 

analysis 

 Here: Vampir 

(commercial) 

2013-04-09 HiPerCH Workshop, Darmstadt 29 

Visual trace analysis 



M
it
g
lie

d
 d

e
r 

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft
 

 Idea 

 Automatic search for patterns of inefficient behavior 

 Classification of behavior & quantification of significance 
 

 

 

 

 
 

 Advantages 

 Guaranteed to cover the entire event trace 

 Quicker than manual/visual trace analysis 

 Helps to identify hot-spots for in-depth manual analysis 

 Open-source example: Scalasca 

Automatic trace analysis 

Call 

path 

P
ro

p
e
rt

y
 

Location 

Low-level 
event trace 

High-level 
result 

Analysis  

2013-04-09 HiPerCH Workshop, Darmstadt 30 



M
it
g
lie

d
 d

e
r 

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft
 

Scalasca trace analysis sweep3D@294,912 BG/P 

 10 min sweep3D 

runtime 

 11 sec analysis 

 4 min trace data 

write/read 

(576 files) 

 7.6 TB buffered 

trace data 

 510 billion 

events 

B. J. N. Wylie, M. Geimer, 

B. Mohr, D. Böhme, 

Z.Szebenyi, F. Wolf: 

Large-scale performance 

analysis of Sweep3D with 

the Scalasca toolset. 

Parallel Processing Letters, 

20(4):397-414, 2010. 



M
it
g
lie

d
 d

e
r 

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft
 

Take away messages 



M
it
g
lie

d
 d

e
r 

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft
 

 TOP500 list November 2012: 

 Average system size: 29,772 cores 

 Median system size:   15,390 cores 

 Machines will get even more parallel in the future 

 The most parallel systems of today will be 

medium-sized tomorrow 

2013-04-09 HiPerCH Workshop, Darmstadt 33 

Scaling is already important today 



M
it
g
lie

d
 d

e
r 

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft
 

 Avoid do-it-yourself solutions 

 Tool developers collaborate with many people, e.g, 

compiler and platform vendors 

 They often know (and use) platform-specific 

tricks or undocumented features 

 E.g., low-overhead timers 

 There are many powerful tools available 

 Often released as open-source 

 Often already installed on your HPC system 

(otherwise bug the center’s support team ) 

 

2013-04-09 HiPerCH Workshop, Darmstadt 34 

Use tools! 



M
it
g
lie

d
 d

e
r 

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft
 

35 

But: no single solution is sufficient… 

A combination of different methods, tools and techniques is 

typically needed! 

■ Tools focus on their specific strength to cope with technical 

challenges 

■ The tools community collaborates 

■ Improved interoperability 

■ Common data formats 

2013-04-09 HiPerCH Workshop, Darmstadt 



M
it
g
lie

d
 d

e
r 

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft
 

 Application codes evolve over time 

 You need to verify whether code changes introduce new 

 Memory errors 

 Race conditions 

 Performance bugs 

 Increasing the scale may reveal new bottlenecks 

 Don’t guess based on tests at small scale 

 Perform analyses at production scale 

2013-04-09 HiPerCH Workshop, Darmstadt 36 

Tool usage is not a one-off process 



M
it
g
lie

d
 d

e
r 

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft
 

Thank you! 


