
M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

Challenges of the Exascale era

… and how tools can help

2013-04-09 | Markus Geimer

 Jülich Supercomputing Centre

 m.geimer@fz-juelich.de

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

■ Moore's law is still in charge, but

■ Clock rates no longer increase

since a couple of years

■ Performance gains only through

increased parallelism

■ Optimization of applications more

difficult due to increasing machine

complexity

■ Hierarchical networks / memory

■ More CPUs / multi-core /

accelerators

2013-04-09 HiPerCH Workshop, Darmstadt 2

The “free lunch” is over

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

Personal motivation (I)

JUGENE

72 rack IBM BlueGene/P

294,912 cores

Most parallel system

in the world

06/2009 to 06/2011 !!!

07 / 2012

2013-04-09 HiPerCH Workshop, Darmstadt 3

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

Personal motivation (II)

2013-04-09 HiPerCH Workshop, Darmstadt 4

JUQUEEN

28 rack IBM BlueGene/Q

458,752 cores

1,835,008 HW threads

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

* From http://www.exascale.org

System attributes 2010 “2015” “2018” Difference
2010 & 2018

System peak 2 Pflop/s 200 Pflop/s 1 Eflop/sec O(1000)

Power 6 MW 15 MW ~20 MW

System memory 0.3 PB 5 PB 32-64 PB O(100)

Node
performance

125 GF 0.5 TF 7 TF 1 TF 10 TF O(10) –
O(100)

Node memory
bandwidth

25 GB/s 0.1 TB/sec 1 TB/sec 0.4 TB/sec 4 TB/sec O(100)

Node
concurrency

12 O(100) O(1,000) O(1,000) O(10,000) O(100) –
O(1000)

Total Concurrency 225,000 O(108) O(109) O(10,000)

Total Node
Interconnect BW

1.5 GB/s 20 GB/sec 200 GB/sec O(100)

MTTI days O(1day) O(1 day) - O(10)

Projection for an Exascale system*

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

 Exascale systems will consist of

 Complex configurations

 With a huge number of components

 Very likely heterogeneous

 Deep software hierarchies of large, complex software

components will be required to make use of such systems

Operating systems, runtime & I/O systems, programming

models, compilers, frameworks & libraries, debuggers &

performance analysis tools, …

Exascale performance challenges

2013-04-09 HiPerCH Workshop, Darmstadt 6

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

 Performance-aware design, development and deployment of

hardware and software necessary

 Integration with OS, compilers, middleware and runtime

systems required

 Support for performance observability in HW and SW (runtime)

needed

 Enable performance measurement and optimization in case of

HW and SW changes due to faults or power adaptation

Cross-cutting considerations

2013-04-09 HiPerCH Workshop, Darmstadt 7

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

 Heterogeneity

 General purpose CPUs, specialized cores, accelerators, …

 Extreme concurrency

 On various levels:

 SIMD

 Multi-/Many-core

 Interconnected nodes

 Perturbation and data volume

 Resilience

 Input / Output

Technical challenges

2013-04-09 HiPerCH Workshop, Darmstadt 8

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

The basics
(First make it right…)

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

 Know the available optimization flags

 In particular: inter-procedural and architecture-specific
optimizations

 Increase warning level

 … and take these warnings serious 

 Perform some runs with runtime checks turned on

 With production workloads!

 Especially array bounds checking

 GCC 4.8 and Clang 3.2 also come with integrated
memory error and data race detectors

 But you can also assist the compiler

 Function prototypes, modules & interfaces, const correctness,
intent specifiers, compiler-specific attributes

2013-04-09 HiPerCH Workshop, Darmstadt 10

The often forgotten “tool”: The compiler

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

 Can detect errors a compiler doesn’t detect, e.g.,

 NULL pointer dereferences, bounds checking, memory

leaks, variable scoping, unused functions, portability issues

 … but sometimes suffer from false positives

 Not available for Fortran (to the best of my knowledge)

 Open-source examples:

 Cppcheck (C++), Clang static analyzer (C/C++/ObjC),

Splint (C)

 Commercial examples:

 FlexeLint (C/C++), Coverity (C/C++/C#/Java),

Insure++ (C/C++)

2013-04-09 HiPerCH Workshop, Darmstadt 11

Static code analysis

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

 Can detect errors such as

 Memory leaks

 Memory corruption

 Allocation/deallocation API mismatches

 Open-source example:

 Valgrind’s “memcheck” tool

 Commercial example:

 Intel Inspector XE

2013-04-09 HiPerCH Workshop, Darmstadt 12

Memory error checking

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

Going parallel
(Still making it right…)

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

 Check for correct MPI usage at runtime

 Conformance to MPI standard

 Parameters passed to MPI

 MPI resource usage

 Detect deadlocks

 Open-source example:

 MUST

 Developed by TU Dresden, LLNL & LANL

 http://tu-dresden.de/zih/must/

2013-04-09 HiPerCH Workshop, Darmstadt 14

MPI correctness checking (I)

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

 Open MPI provides (limited) MPI parameter checking

 Also interfaces with Valgrind to detect MPI-specific memory

errors at runtime, e.g.,

 Accessing buffer under control of non-blocking

communication

 Wrong input parameters (e.g., wrongly sized send buffers)

 Uninitialized input buffers

2013-04-09 HiPerCH Workshop, Darmstadt 15

MPI correctness checking (II)

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

 Getting multi-threaded codes right is non-trivial!

 Automatic thread error detectors can help identify

 Data races

 Potential deadlocks

 Even if they don’t show up within your environment and under
your typical workload!

 Open-source example:

 Valgrind’s “hellgrind” and “DRD” (data race detector) tools

 Commercial/closed-source examples:

 Intel Inspector XE

 Oracle Thread Analyzer

2013-04-09 HiPerCH Workshop, Darmstadt 16

Threading error detection

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

 Using printf() for debugging is cumbersome with parallel

applications 

 Better use full-featured or specialized debuggers

 Open-source examples:

 GDB integration in Eclipse

 Scales up to a few hundred processes

 STAT: scalable collection of stack traces

 Commercial examples:

 RogueWave TotalView

 Allinea DDT

2013-04-09 HiPerCH Workshop, Darmstadt 17

Parallel debugging

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

Performance analysis,

optimization and scaling
(Then make it fast…)

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

■ Successful performance engineering is a combination of

■ The right algorithms and libraries

■ Compiler flags and directives

■ Thinking !!!

■ Measurement is better than guessing

■ To determine performance bottlenecks

■ To compare alternatives

■ To validate tuning decisions and optimizations

 After each step!

 Every doubling of scale reveals a new bottleneck!

19

Tuning basics

2013-04-09 HiPerCH Workshop, Darmstadt

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

20

Example: XNS wait-state analysis on BG/L (2007)

2013-04-09 HiPerCH Workshop, Darmstadt

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

2013-04-09 HiPerCH Workshop, Darmstadt 21

Example: Sweep3D wait-state analysis on BG/P (2010)

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

■ “Sequential” factors

■ Computation

Choose right algorithm, use optimizing compiler

■ Cache and memory

Tough! Only limited tool support, hope compiler gets it right

■ Input / output

Often not given enough attention, but extremely important

at scale!

22

Performance factors of parallel applications (I)

2013-04-09 HiPerCH Workshop, Darmstadt

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

■ “Parallel” factors

■ Partitioning / decomposition

■ Communication (i.e., message passing)

■ Multithreading

■ Synchronization / locking

More or less understood, good tool support

23

Performance factors of parallel applications (II)

2013-04-09 HiPerCH Workshop, Darmstadt

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

 Important to achieve good node-level performance

 Some tools can help identifying memory issues, such as

 Cache utilization

 False sharing

 Suboptimal prefetching

 NUMA effects

 Open-source examples:

 Valgrind’s “cachegrind” and “callgrind” tools

 KCachegrind (GUI)

 Commercial examples:

 RogueWave ThreadSpotter

 Intel Amplifier XE

2013-04-09 HiPerCH Workshop, Darmstadt 24

Memory / cache optimization

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

 Profile:

 Records aggregated information

 Data volume (more or less) independent of program runtime

 Shows distribution of metrics (e.g., time or visits) across

routines or call-paths

 Sufficient to find computational hot spots

 Open-source examples:

 HPCToolkit (Rice University)

 TAU (U. of Oregon)

 Score-P (community project, see http://www.score-p.org)

2013-04-09 HiPerCH Workshop, Darmstadt 25

Scalable profiling

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

2013-04-09 HiPerCH Workshop, Darmstadt 26

Example: TAU

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

■ Trace:

■ Records chronologically ordered sequence of events

(e.g., enter/leave of a function, send/receive of a message)

■ Abstract execution model on level of defined events

■ Data volume dependent on runtime, scale, and level of

detail

■ Open-source examples:

■ Extrae / Paraver (BSC)

■ Score-P

■ Commercial examples:

■ Intel Trace Collector & Analyzer

27

Scalable tracing for in-depth analysis

2013-04-09 HiPerCH Workshop, Darmstadt

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

■ Tracing advantages

■ Event traces preserve the temporal and spatial relationships
among individual events ( context)

■ Allows reconstruction of dynamic application behavior on any
required level of abstraction

■ Most general measurement technique

■ Profile data can be reconstructed from event traces

■ Disadvantages

■ Traces can very quickly become extremely large

■ Writing events to file at runtime causes perturbation

■ Writing tracing software is complicated

■ Event buffering, clock synchronization, ...

28

Tracing vs. profiling

2013-04-09 HiPerCH Workshop, Darmstadt

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

 Allows for an

in-depth

analysis

 Here: Vampir

(commercial)

2013-04-09 HiPerCH Workshop, Darmstadt 29

Visual trace analysis

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

 Idea

 Automatic search for patterns of inefficient behavior

 Classification of behavior & quantification of significance

 Advantages

 Guaranteed to cover the entire event trace

 Quicker than manual/visual trace analysis

 Helps to identify hot-spots for in-depth manual analysis

 Open-source example: Scalasca

Automatic trace analysis

Call

path

P
ro

p
e
rt

y

Location

Low-level
event trace

High-level
result

Analysis 

2013-04-09 HiPerCH Workshop, Darmstadt 30

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

Scalasca trace analysis sweep3D@294,912 BG/P

 10 min sweep3D

runtime

 11 sec analysis

 4 min trace data

write/read

(576 files)

 7.6 TB buffered

trace data

 510 billion

events

B. J. N. Wylie, M. Geimer,

B. Mohr, D. Böhme,

Z.Szebenyi, F. Wolf:

Large-scale performance

analysis of Sweep3D with

the Scalasca toolset.

Parallel Processing Letters,

20(4):397-414, 2010.

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

Take away messages

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

 TOP500 list November 2012:

 Average system size: 29,772 cores

 Median system size: 15,390 cores

 Machines will get even more parallel in the future

 The most parallel systems of today will be

medium-sized tomorrow

2013-04-09 HiPerCH Workshop, Darmstadt 33

Scaling is already important today

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

 Avoid do-it-yourself solutions

 Tool developers collaborate with many people, e.g,

compiler and platform vendors

 They often know (and use) platform-specific

tricks or undocumented features

 E.g., low-overhead timers

 There are many powerful tools available

 Often released as open-source

 Often already installed on your HPC system

(otherwise bug the center’s support team )

2013-04-09 HiPerCH Workshop, Darmstadt 34

Use tools!

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

35

But: no single solution is sufficient…

A combination of different methods, tools and techniques is

typically needed!

■ Tools focus on their specific strength to cope with technical

challenges

■ The tools community collaborates

■ Improved interoperability

■ Common data formats

2013-04-09 HiPerCH Workshop, Darmstadt

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

 Application codes evolve over time

 You need to verify whether code changes introduce new

 Memory errors

 Race conditions

 Performance bugs

 Increasing the scale may reveal new bottlenecks

 Don’t guess based on tests at small scale

 Perform analyses at production scale

2013-04-09 HiPerCH Workshop, Darmstadt 36

Tool usage is not a one-off process

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

Thank you!

